首页> 外文期刊>Machine Vision and Applications >Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images
【24h】

Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images

机译:从明场显微镜图像自动分割粘附的生物细胞边界和细胞核

获取原文
获取原文并翻译 | 示例

摘要

The detection and segmentation of adherent eukaryotic cells from brightfield microscopy images represent challenging tasks in the image analysis field. This paper presents a free and open-source image analysis package which fully automates the tasks of cell detection, cell boundary segmentation, and nucleus segmentation in bright-field images. The package also performs image registration between brightfield and fluorescence images. The algorithms were evaluated on a variety of biological cell lines and compared against manual and fluorescence-based ground truths. When tested on HT1080 and HeLa cells, the cell detection step was able to correctly identify over 80% of cells, whilst the cell boundary segmentation step was able to segment over 75% of the cell body pixels, and the nucleus segmentation step was able to correctly identify nuclei in over 75% of the cells. The algorithms for cell detection and nucleus segmentation are novel to the field, whilst the cell boundary segmentation algorithm is contrast-invariant, which makes it more robust on these low-contrast images. Together, this suite of algorithms permit brightfield microscopy image processing without the need for additional fluorescence images. Finally our sephaCe application,provides a novel method for integrating these methods with any motorised microscope, thus facilitating the adoption of these techniques in biological research labs.
机译:来自明视野显微镜图像的粘附真核细胞的检测和分割代表了图像分析领域的挑战性任务。本文提出了一个免费的开源图像分析程序包,该程序包可自动执行明场图像中细胞检测,细胞边界分割和细胞核分割的任务。该软件包还执行明场和荧光图像之间的图像配准。该算法在各种生物细胞系上进行了评估,并与基于人工和基于荧光的地面真相进行了比较。在HT1080和HeLa细胞上进行测试时,细胞检测步骤能够正确识别80%以上的细胞,而细胞边界分割步骤则能够分割超过75%的细胞体像素,而细胞核分割步骤则能够正确识别超过75%的细胞核。细胞检测和细胞核分割算法在该领域是新颖的,而细胞边界分割算法是对比度不变的,这使其在这些低对比度图像上更加健壮。总之,这套算法允许进行明场显微镜图像处理,而无需其他荧光图像。最后,我们的sephaCe应用程序提供了一种将这些方法与任何电动显微镜集成的新颖方法,从而促进了这些技术在生物学研究实验室中的采用。

著录项

  • 来源
    《Machine Vision and Applications》 |2012年第4期|p.607-621|共15页
  • 作者单位

    Department of Radiation Physics, Stanford University,875 Blake Wilbur Drive, CC-G206, Stanford, CA 94305, USA;

    Mirada Medical Ltd, Innovation House, Mill Street,Oxford OX2 0JX, UK;

    Department of Engineering Science, FRS FREng FMedSci Wolfson Medical Vision Lab, University of Oxford, Parks Road,Oxford OX1 3PJ, UK;

    Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7QD, UK;

    Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7QD, UK;

    Department of Engineering Science, FRS FREng FMedSci Wolfson Medical Vision Lab, University of Oxford, Parks Road,Oxford OX1 3PJ, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    segmentation; registration; cell detection; level sets; monogenic signal; continuous intrinsic dimensionality;

    机译:分割;注册;细胞检测;水平集;单基因信号连续内在维数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号