首页> 外文期刊>Machine Learning >Mining Skewed and Sparse Transaction Data for Personalized Shopping Recommendation
【24h】

Mining Skewed and Sparse Transaction Data for Personalized Shopping Recommendation

机译:挖掘偏斜和稀疏的交易数据以进行个性化购物推荐

获取原文
获取原文并翻译 | 示例

摘要

A good shopping recommender system can boost sales in a retailer store. To provide accurate recommendation, the recommender needs to accurately predict a customer's preference, an ability difficult to acquire. Conventional data mining techniques, such as association rule mining and collaborative filtering, can generally be applied to this problem, but rarely produce satisfying results due to the skewness and sparsity of transaction data. In this paper, we report the lessons that we learned in two real-world data mining applications for personalized shopping recommendation. We learned that extending a collaborative filtering method based on ratings (e.g., GroupLens) to perform personalized shopping recommendation is not trivial and that it is not appropriate to apply association-rule based methods (e.g., the IBM SmartPad system) for large scale prediction of customers' shopping preferences. Instead, a probabilistic graphical model can be more effective in handling skewed and sparse data. By casting collaborative filtering algorithms in a probabilistic framework, we derived HyPAM (Hybrid Poisson Aspect Modelling), a novel probabilistic graphical model for personalized shopping recommendation. Experimental results show that HyPAM outperforms GroupLens and the IBM method by generating much more accurate predictions of what items a customer will actually purchase in the unseen test data.
机译:一个好的购物推荐系统可以促进零售商的销售。为了提供准确的推荐,推荐者需要准确地预测客户的偏好,这是一种难以获得的能力。诸如关联规则挖掘和协作过滤之类的常规数据挖掘技术通常可以应用于此问题,但是由于事务数据的偏斜和稀疏性,很少会产生令人满意的结果。在本文中,我们报告了我们在两个实际数据挖掘应用程序中为个性化购物推荐所吸取的教训。我们了解到,扩展基于评级(例如GroupLens)的协作过滤方法以执行个性化购物推荐并非易事,并且不适合将基于关联规则的方法(例如IBM SmartPad系统)用于大规模的销售预测。客户的购物偏好。相反,概率图形模型可以更有效地处理偏斜和稀疏的数据。通过在概率框架中转换协作过滤算法,我们得出了HyPAM(混合泊松纵横比建模),这是一种用于个性化购物推荐的新型概率图形模型。实验结果表明,HyPAM通过在看不见的测试数据中生成对客户实际购买的商品的更准确的预测,从而胜过GroupLens和IBM的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号