首页> 外文期刊>Machine Learning >The max-min hill-climbing Bayesian network structure learning algorithm
【24h】

The max-min hill-climbing Bayesian network structure learning algorithm

机译:最大最小爬山贝叶斯网络结构学习算法

获取原文
获取原文并翻译 | 示例

摘要

We present a new algorithm for Bayesian network structure learning, called Max-Min Hill-Climbing (MMHC). The algorithm combines ideas from local learning, constraint-based, and search-and-score techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. In our extensive empirical evaluation MMHC outperforms on average and in terms of various metrics several prototypical and state-of-the-art algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical results simultaneously comparing most of the major Bayesian network algorithms against each other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate algorithm, corroborated by our experiments. MMHC and detailed results of our study are publicly available at http://www.dsl-lab.org/supplements/mmhc_paper/mmhc_index.html.
机译:我们提出了一种用于贝叶斯网络结构学习的新算法,称为Max-Min Hill-Climbing(MMHC)。该算法以有原则和有效的方式结合了来自本地学习,基于约束和搜索与评分技术的思想。它首先重建贝叶斯网络的骨架,然后执行贝叶斯评分贪婪爬山搜索以对边缘进行定向。在我们广泛的实证评估中,MMHC在各种指标方面平均表现出色,其中包括几种原型和最新算法,即PC,稀疏候选,三相依赖分析,最优重新插入,贪婪等效搜索和贪婪搜索。这些是同时将大多数主要贝叶斯网络算法相互比较的第一批实验结果。 MMHC具有某些理论上的优势,特别是在稀疏候选算法方面,得到了我们实验的证实。 MMHC及其研究的详细结果可从http://www.dsl-lab.org/supplements/mmhc_paper/mmhc_index.html公开获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号