首页> 外文期刊>Machine Learning >A collaborative filtering framework based on both local user similarity and global user similarity
【24h】

A collaborative filtering framework based on both local user similarity and global user similarity

机译:基于本地用户相似度和全局用户相似度的协作过滤框架

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering as a classical method of information retrieval has been widely used in helping people to deal with information overload. In this paper, we introduce the concept of local user similarity and global user similarity, based on surprisal-based vector similarity and the application of the concept of maximin distance in graph theory. Surprisal-based vector similarity expresses the relationship between any two users based on the quantities of information (called surprisal) contained in their ratings. Global user similarity defines two users being similar if they can be connected through their locally similar neighbors. Based on both of Local User Similarity and Global User Similarity, we develop a collaborative filtering framework called LS&GS. An empirical study using the MovieLens dataset shows that our proposed framework outperforms other state-of-the-art collaborative filtering algorithms.
机译:协作过滤是一种经典的信息检索方法,已广泛用于帮助人们处理信息过载。在本文中,我们基于基于惊奇的向量相似度,并介绍了最大化用户距离概念在图论中的应用,介绍了本地用户相似度和全局用户相似度的概念。基于惊奇的向量相似度表示基于两个用户的等级中包含的信息量(被称为惊奇)之间的关系。全局用户相似性定义了两个用户可以通过本地相似的邻居连接而相似的情况。基于本地用户相似度和全局用户相似度,我们开发了一个称为LS&GS的协作过滤框架。使用MovieLens数据集进行的实证研究表明,我们提出的框架优于其他最新的协作过滤算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号