首页> 外文期刊>Machine Learning >Inductive logic programming for gene regulation prediction
【24h】

Inductive logic programming for gene regulation prediction

机译:用于基因调控预测的归纳逻辑编程

获取原文
获取原文并翻译 | 示例

摘要

We present a systems biology application of ILP, where the goal is to predict the regulation of a gene under a certain condition from binding site information, the state of regulators, and additional information. In the experiments, the boosted Tilde model is on par with the original model by Middendorf et al. based on alternating decision trees (ADTrees), given the same information. Adding functional categorizations and protein-protein interactions, however, it is possible to improve the performance substantially. We believe that decoding the regulation mechanisms of genes is an exciting new application of learning in logic, requiring data integration from various sources and potentially contributing to a better understanding on a system level.
机译:我们提出了ILP的系统生物学应用,其目的是根据结合位点信息,调节子的状态以及其他信息来预测特定条件下基因的调节。在实验中,增强的Tilde模型与Middendorf等人的原始模型相当。基于交替决策树(ADTree),并提供相同的信息。但是,添加功能分类和蛋白质-蛋白质相互作用,可以显着提高性能。我们认为,解码基因的调控机制是逻辑学习的令人兴奋的新应用,它需要来自各种来源的数据集成,并可能有助于在系统水平上更好地理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号