首页> 外文期刊>Machine Learning >Generalized ordering-search for learning directed probabilistic logical models
【24h】

Generalized ordering-search for learning directed probabilistic logical models

机译:面向学习的概率逻辑模型的广义排序搜索

获取原文
获取原文并翻译 | 示例

摘要

Recently, there has been an increasing interest in directed probabilistic logical models and a variety of formalisms for describing such models has been proposed. Although many authors provide high-level arguments to show that in principle models in their formalism can be learned from data, most of the proposed learning algorithms have not yet been studied in detail. We introduce an algorithm, generalized ordering-search, to learn both structure and conditional probability distributions (CPDs) of directed probabilistic logical models. The algorithm is based on the ordering-search algorithm for Bayesian networks. We use relational probability trees as a representation for the CPDs. We present experiments on a genetics domain, blocks world domains and the Cora dataset.
机译:近来,人们对定向概率逻辑模型越来越感兴趣,并且已经提出了用于描述这种模型的各种形式主义。尽管许多作者提供了高级的论据来表明,原则上形式主义的模型可以从数据中学习,但是大多数提出的学习算法尚未进行详细研究。我们引入了一种广义排序搜索算法,以学习定向概率逻辑模型的结构和条件概率分布(CPD)。该算法基于贝叶斯网络的排序搜索算法。我们使用关系概率树来表示CPD。我们目前在遗传学领域进行实验,阻止世界领域和Cora数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号