首页> 外文期刊>Machine Learning >Machine learning in adversarial environments
【24h】

Machine learning in adversarial environments

机译:对抗环境中的机器学习

获取原文
获取原文并翻译 | 示例

摘要

Whenever machine learning is used to prevent illegal or unsanctioned activity and there is an economic incentive, adversaries will attempt to circumvent the protection provided. Constraints on how adversaries can manipulate training and test data for classifiers used to detect suspicious behavior make problems in this area tractable and interesting. This special issue highlights papers that span many disciplines including email spam detection, computer intrusion detection, and detection of web pages deliberately designed to manipulate the priorities of pages returned by modern search engines. The four papers in this special issue provide a standard taxonomy of the types of attacks that can be expected in an adversarial framework, demonstrate how to design classifiers that are robust to deleted or corrupted features, demonstrate the ability of modern polymorphic engines to rewrite malware so it evades detection by current intrusion detection and antivirus systems, and provide approaches to detect web pages designed to manipulate web page scores returned by search engines. We hope that these papers and this special issue encourages the multidis-ciplinary cooperation required to address many interesting problems in this relatively new area including predicting the future of the arms races created by adversarial learning, developing effective long-term defensive strategies, and creating algorithms that can process the massive amounts of training and test data available for internet-scale problems.
机译:每当使用机器学习来防止非法或未经批准的活动并且有经济动机时,对手都会尝试绕过所提供的保护。对手如何操纵用于识别可疑行为的分类器的训练和测试数据的约束,使该领域的问题变得容易解决且引起关注。本期特刊着重介绍了涉及许多学科的论文,包括电子邮件垃圾邮件检测,计算机入侵检测以及故意检测来操纵现代搜索引擎返回页面优先级的网页检测。本期特刊的四篇论文提供了在对抗性框架中可以预期的攻击类型的标准分类法,展示了如何设计对删除或损坏的功能具有鲁棒性的分类器,展示了现代多态引擎重写恶意软件的能力,它规避了当前入侵检测和防病毒系统的检测,并提供了检测旨在操纵搜索引擎返回的网页分数的网页的方法。我们希望这些论文和这个特刊鼓励在这个相对较新的领域中解决许多有趣问题所需的跨学科合作,包括预测由对抗性学习产生的军备竞赛的未来,制定有效的长期防御策略以及创建算法可以处理针对互联网规模问题的大量培训和测试数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号