首页> 外文期刊>Machine Learning >Relational retrieval using a combination of path-constrained random walks
【24h】

Relational retrieval using a combination of path-constrained random walks

机译:使用路径受限的随机游走的组合进行关系检索

获取原文
获取原文并翻译 | 示例

摘要

Scientific literature with rich metadata can be represented as a labeled directed graph. This graph representation enables a number of scientific tasks such as ad hoc retrieval or named entity recognition (NER) to be formulated as typed proximity queries in the graph. One popular proximity measure is called Random Walk with Restart (RWR), and much work has been done on the supervised learning of RWR measures by associating each edge label with a parameter. In this paper, we describe a novel learnable proximity measure which instead uses one weight per edge label sequence: proximity is defined by a weighted combination of simple "path experts", each corresponding to following a particular sequence of labeled edges. Experiments on eight tasks in two subdomains of biology show that the new learning method significantly outperforms the RWR model (both trained and untrained). We also extend the method to support two additional types of experts to model intrinsic properties of entities: query-independent experts, which generalize the PageRank measure, and popular entity experts which allow rankings to be adjusted for particular entities that are especially important.
机译:具有丰富元数据的科学文献可以表示为带标签的有向图。此图表示使许多科学任务(例如临时检索或命名实体识别(NER))被表述为图中的类型化邻近查询。一种流行的接近度度量称为“重启随机游走(RWR)”,并且通过将每个边缘标签与参数相关联,在RWR度量的监督学习方面已进行了大量工作。在本文中,我们描述了一种新颖的可学习的邻近度度量,而是对每个边缘标记序列使用一个权重:邻近度是由简单的“路径专家”的加权组合定义的,每个路径专家都对应于遵循特定标记边缘的序列。在生物学的两个子领域对八个任务进行的实验表明,新的学习方法明显优于RWR模型(经过训练和未经训练)。我们还扩展了该方法,以支持另外两种类型的专家来对实体的固有属性进行建模:独立于查询的专家(用于对PageRank度量进行概括),以及流行的实体专家(用于针对特别重要的特定实体调整排名)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号