首页> 外文期刊>Machine Learning >A scalable preference model for autonomous decision-making
【24h】

A scalable preference model for autonomous decision-making

机译:用于自主决策的可扩展偏好模型

获取原文
获取原文并翻译 | 示例

摘要

Emerging domains such as smart electric grids require decisions to be made autonomously, based on the observed behaviors of large numbers of connected consumers. Existing approaches either lack the flexibility to capture nuanced, individualized preference profiles, or scale poorly with the size of the dataset. We propose a preference model that combines flexible Bayesian nonparametric priors—providing state-of-the-art predictive power—with well-justified structural assumptions that allow a scalable implementation. The Gaussian process scalable preference model via Kronecker factorization ( GaSPK ) model provides accurate choice predictions and principled uncertainty estimates as input to decision-making tasks. In consumer choice settings where alternatives are described by few key attributes, inference in our model is highly efficient and scalable to tens of thousands of choices.
机译:诸如智能电网之类的新兴领域要求根据观察到的大量连接用户的行为自主做出决策。现有方法要么缺乏捕获细微差别,个性化偏好配置文件的灵活性,要么缺乏随数据集大小扩展的能力。我们提出了一种偏好模型,该模型结合了灵活的贝叶斯非参数先验值(提供最新的预测能力)和充分合理的结构假设,从而可以实现可扩展的实施。通过Kronecker分解(GaSPK)模型的高斯过程可扩展偏好模型提供了准确的选择预测和有原则的不确定性估计,作为决策任务的输入。在用很少的关键属性描述替代方案的消费者选择设置中,我们模型的推论是高效的,并且可扩展到成千上万的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号