首页> 外文期刊>Machine Learning >Identifying and tracking topic-level influencers in the microblog streams
【24h】

Identifying and tracking topic-level influencers in the microblog streams

机译:识别和跟踪微博流中的主题级别影响者

获取原文
获取原文并翻译 | 示例

摘要

Topic-level social influence analysis has been playing an important role in the online social networks like microblogs. Previous works usually use the cumulative number of links, such as the number of followers, to measure users' topic-level influence in a static network. However, they ignore the dynamics of influence and the methods they proposed can not be applied to social streams. To address the limitations of prior works, we firstly propose a novel topic-level influence over time (TIT) model integrating the text, links and time to analyze the topic-level temporal influence of each user. We then design an influence decay based approach to measure users' topic-level influence from the learned temporal influence. In order to track the influencers in data streams, we combine TIT and the influence decay method into a united online model (named oTIT), which is applicable to dynamic scenario. Through extensive experiments, we demonstrate the superiority of our approach, compared with the baseline and the state-of-the-art method. Moreover, we discover influence exhibits significantly different variation patterns over different topics, which verifies our viewpoint and gives us a new angle to understand its dynamic nature.
机译:主题级别的社会影响力分析在微博等在线社交网络中一直发挥着重要作用。以前的作品通常使用链接的累积数量(例如关注者的数量)来衡量用户在静态网络中的主题级别影响。但是,他们忽略了影响力的变化,他们提出的方法无法应用于社会流。为了解决现有工作的局限性,我们首先提出了一个新颖的主题级别随时间变化的影响(TIT)模型,该模型集成了文本,链接和时间,以分析每个用户的主题级别随时间的影响。然后,我们设计一种基于影响衰减的方法,以从学习到的时间影响中衡量用户的主题级别影响。为了跟踪数据流中的影响者,我们将TIT和影响衰减方法组合到一个统一的在线模型(称为oTIT)中,该模型适用于动态场景。通过广泛的实验,我们证明了与基线和最新方法相比,我们的方法的优越性。此外,我们发现影响力在不同主题上表现出明显不同的变化方式,这验证了我们的观点,并为我们提供了一个了解其动态性质的新视角。

著录项

  • 来源
    《Machine Learning》 |2018年第3期|551-578|共28页
  • 作者单位

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social influence; Graphical model; Online; Sina Weibo;

    机译:社会影响图形模型在线新浪微博;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号