首页> 外文期刊>Lifetime Data Analysis >Semiparametric regression and risk prediction with competing risks data under missing cause of failure
【24h】

Semiparametric regression and risk prediction with competing risks data under missing cause of failure

机译:在缺少失败原因下,具有竞争风险数据的半造型回归和风险预测

获取原文
获取原文并翻译 | 示例

摘要

The cause of failure in cohort studies that involve competing risks is frequently incompletely observed. To address this, several methods have been proposed for the semiparametric proportional cause-specific hazards model under a missing at random assumption. However, these proposals provide inference for the regression coefficients only, and do not consider the infinite dimensional parameters, such as the covariate-specific cumulative incidence function. Nevertheless, the latter quantity is essential for risk prediction in modern medicine. In this paper we propose a unified framework for inference about both the regression coefficients of the proportional cause-specific haz-ards model and the covariate-specific cumulative incidence functions under missing at random cause of failure. Our approach is based on a novel computationally efficient maximum pseudo-partial-likelihood estimation method for the semiparametric propor-tional cause-specific hazards model. Using modern empirical process theory we derive the asymptotic properties of the proposed estimators for the regression coefficients and the covariate-specific cumulative incidence functions, and provide methodology for constructing simultaneous confidence bands for the latter. Simulation studies show that our estimators perform well even in the presence of a large fraction of missing cause of failures, and that the regression coefficient estimator can be substantially more efficient compared to the previously proposed augmented inverse probability weighting estimator. The method is applied using data from an HIV cohort study and a bladder cancer clinical trial.
机译:涉及竞争风险的群组研究原因经常观察到涉及竞争风险。为了解决这一点,已经提出了几种方法在随机假设下缺失下的半游戏比例原因特异性危险模型。然而,这些提案仅为回归系数提供推理,并且不考虑无限尺寸参数,例如协变量特定的累积频率。尽管如此,后一种数量对于现代医学中的风险预测至关重要。在本文中,我们提出了一个统一的框架,用于推断比例原因特异性HAZ-ARDS模型的回归系数和在失败的随机原因下缺失的协变量特异性累积发生率。我们的方法是基于新的计算上有效的最大伪部分似然估计方法,用于半导体提出型原因特异性危险模型。利用现代经验过程理论,我们推导出回归系数和协变量特异性累积发生率函数的建议估计的渐近性质,并为构建后者的同步置信带提供方法。仿真研究表明,与先前提出的增强逆概率加权估计器相比,我们的估计甚至在大部分缺失原因的存在下表现良好。使用来自HIV队列研究和膀胱癌临床试验的数据施用该方法。

著录项

  • 来源
    《Lifetime Data Analysis》 |2020年第4期|659-684|共26页
  • 作者单位

    Department of Biostatistics Indiana University Fairbanks School of Public Health and School of Medicine 410 West 10th Street Suite 3000 Indianapolis IN 46202 USA;

    Department of Biostatistics University of Nebraska Medical Center Omaha USA;

    Department of Biostatistics Indiana University Fairbanks School of Public Health and School of Medicine 410 West 10th Street Suite 3000 Indianapolis IN 46202 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cause-specific hazard; Cumulative incidence function; Confidence band;

    机译:造成特异性危险;累积发病率;信心乐队;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号