首页> 外文期刊>Knowledge Organization >Automated Subject Classification of Textual Documents in the Context of Web-Based Hierarchical Browsing
【24h】

Automated Subject Classification of Textual Documents in the Context of Web-Based Hierarchical Browsing

机译:基于Web的分层浏览环境中文本文档的自动主题分类

获取原文
获取原文并翻译 | 示例

摘要

While automated methods for information organization have been around for several decades now, exponential growth of the World Wide Web has put them into the forefront of research in different communities, within which several approaches can be identified: 1) machine learning (algorithms that allow computers to improve their performance based on learning from pre-existing data); 2) document clustering (algorithms for unsupervised document organization and automated topic extraction); and 3) string matching (algorithms that match given strings within larger text). Here the aim was to automatically organize textual documents into hierarchical structures for subject browsing. The string-matching approach was tested using a controlled vocabulary (containing pre-selected and pre-defined authorized terms, each corresponding to only one concept). The results imply that an appropriate controlled vocabulary, with a sufficient number of entry terms designating classes, could in itself be a solution for automated classification. Then, if the same controlled vocabulary had an appropriate hierarchical structure, it would at the same time provide a good browsing structure for the collection of automatically classified documents.
机译:尽管信息组织的自动化方法已经存在了几十年,但万维网的指数级增长已使它们成为不同社区研究的前沿,在其中可以确定几种方法:1)机器学习(允许计算机使用的算法)在从已有数据中学习的基础上提高绩效); 2)文档聚类(用于无监督文档组织和自动主题提取的算法);和3)字符串匹配(匹配较大文本中给定字符串的算法)。此处的目的是将文本文档自动组织为用于主题浏览的层次结构。使用受控词汇表(包含预选和预定义的授权术语,每个术语仅对应一个概念)测试了字符串匹配方法。结果表明,具有足够数量的条目用于指定类别的适当受控词汇表本身可以成为自动化分类的解决方案。然后,如果相同的受控词汇表具有适当的层次结构,则它将同时为收集自动分类的文档提供良好的浏览结构。

著录项

  • 来源
    《Knowledge Organization》 |2011年第3期|p.230-244|共15页
  • 作者

    Koraljka Golub;

  • 作者单位

    UKOLN, University of Bath, Bath, BA2 7AY, United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号