首页> 外文期刊>Knowledge-Based Systems >Image compression based on octave convolution and semantic segmentation
【24h】

Image compression based on octave convolution and semantic segmentation

机译:基于八度卷积与语义分割的图像压缩

获取原文
获取原文并翻译 | 示例

摘要

Lossy image compression based on deep learning usually contains stacking convolutional layers, pooling layers, and nonlinear functions. However, the feature map is obtained by the convolutional layer, which has a lot of redundancy, so we use octave convolution instead of vanilla convolution to improve compression efficiency. The feature map can be divided into high-frequency and lowfrequency information. We use octave convolution to design an automatic codec to decompose the feature map into high-frequency and low-frequency information, which effectively improves the quality of the generated image. First, the semantic segmentation map of the input image is obtained by pre-training SegNet. The ComNet uses the original image and the semantic segmentation map to generate a low-dimensional representation, and the GenNet network utilizes the low-dimensional representation and the semantic segmentation map to estimate images. Then, the residuals between the reconstructed image and the original image are encoded. Finally, the reconstructed image and the decoded residual image are used to obtain the final high-quality reconstruction. Experimental results show that our method outperforms the existing image coding standards in terms of PSNR and MS-SSIM at different bit rates, and the reconstruction of images with complex textures and semantics has more obvious advantages. (C) 2021 Elsevier B.V. All rights reserved.
机译:基于深度学习的有损图像压缩通常包含堆叠卷积层,池层和非线性函数。然而,特征图是由卷积层获得的,这具有很多冗余,因此我们使用八度卷积而不是香草卷积来提高压缩效率。特征贴图可分为高频和低频率信息。我们使用八度卷积来设计自动编解码器,以将特征图分解为高频和低频信息,这有效地提高了所生成的图像的质量。首先,通过预先训练SEGNET获得输入图像的语义分割映射。 COMNET使用原始图像和语义分割映射来生成低维表示,并且Gennet网络利用低维表示和语义分割图来估计图像。然后,对重建图像和原始图像之间的残差被编码。最后,使用重建的图像和解码的残余图像来获得最终的高质量重建。实验结果表明,我们的方法在不同比特率的PSNR和MS-SSIM方面优于现有的图像编码标准,以及复杂纹理和语义的图像的重建具有更明显的优势。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第27期|107254.1-107254.11|共11页
  • 作者单位

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China;

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China|Shandong Normal Univ Inst Data Sci & Technol Jinan 250014 Peoples R China;

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China|Shandong Normal Univ Inst Data Sci & Technol Jinan 250014 Peoples R China;

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China;

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China|Shandong Normal Univ Inst Data Sci & Technol Jinan 250014 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image compression; Deep learning; Octave convolution; Semantic segmentation map;

    机译:图像压缩;深入学习;八度卷积;语义分割图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号