首页> 外文期刊>Knowledge-Based Systems >A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets
【24h】

A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets

机译:Covid-19推文的情感分析的新型融合融合深度学习模型

获取原文
获取原文并翻译 | 示例

摘要

Undoubtedly, coronavirus (COVID-19) has caused one of the biggest challenges of all times. The ongoing COVID-19 pandemic has caused more than 150 million infected cases and one million deaths globally as of May 5, 2021. Understanding the sentiment of people expressed in their social media comments can help in monitoring, controlling, and ultimately eradicating the disease. This is a sensitive matter as the threat of infectious disease significantly affects the way people think and behave in various ways. In this study, we proposed a novel method based on the fusion of four deep learning and one classical supervised machine learning model for sentiment analysis of coronavirus-related tweets from eight countries. Also, we analyzed coronavirus-related searches using Google Trends to better understand the change in the sentiment pattern at different times and places. Our findings reveal that the coronavirus attracted the attention of people from different countries at different times in varying intensities. Also, the sentiment in their tweets is correlated to the news and events that occurred in their countries including the number of newly infected cases, number of recoveries and deaths. Moreover, common sentiment patterns can be observed in various countries during the spread of the virus. We believe that different social media platforms have great impact on raising people's awareness about the importance of this disease as well as promoting preventive measures among people in the community. (C) 2021 Elsevier B.V. All rights reserved.
机译:毫无疑问,冠状病毒(Covid-19)导致了所有时间的最大挑战之一。正在进行的Covid-19大流行导致超过1.5亿个受感染的病例和100万人死亡,截至5月5日,截至5月5日,截至2002年5月5日。了解社交媒体评论中表达人民的情绪可以帮助监测,控制和最终消除这种疾病。这是一种敏感的问题,因为传染病的威胁显着影响人们以各种方式思考和行为的方式。在这项研究中,我们提出了一种基于四个深度学习融合的新方法,以及八个国家的冠状病毒相关推文的情绪分析的一个经典监督机器学习模型。此外,我们使用谷歌趋势分析了与冠状病毒相关的搜索,以更好地了解不同时间和地点情绪模式的变化。我们的调查结果表明,冠状病毒在不同的时期在不同的强度中引起了不同国家的人们的注意。此外,其推文中的情绪与他们国家发生的新闻和事件相关联,包括新感染病例的数量,回收率和死亡人数。此外,在病毒的传播期间可以在各个国家观察到共同的情绪模式。我们认为,不同的社交媒体平台对提高人们对这种疾病重要性的认识以及促进社区人民的预防措施,不同的影响。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号