首页> 外文期刊>Knowledge-Based Systems >A hybrid intelligent approach to detect Android Botnet using Smart Self-Adaptive Learning-based PSO-SVM
【24h】

A hybrid intelligent approach to detect Android Botnet using Smart Self-Adaptive Learning-based PSO-SVM

机译:一种使用智能自适应学习的PSO-SVM检测Android Botnet的混合智能方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, extensive research has been conducted in the field of detecting Android botnet, but most of the approaches introduced can provide a good answer to a limited number of these datasets. Now the question is how to introduce an approach that offers a high detection rate on various Android botnets. To answer this question, we propose a Smart Self-Adaptive Learning Based Particle Swarm Optimization Support Vector Machine (SSLPSO-SVM) approach to identify Android botnet with high accuracy. The SSLPSO algorithm simultaneously uses five different strategies for scanning search space, which are based on the PSO algorithm. Instead of choosing strategies using the Roulette Wheel Selection method, SSLPSO uses a novel method called Smart Selection Strategies (SSS). This method determines the frequency of implementation and the priority of each strategy based on the number of changes created in the Personal best(Pbest) and Global best (Gbest) particles, at each stage of the execution. In other words, the strategy that has been able to make more changes in Pbest and Gbest in the previous step of the implementation; in the next step, not only will it be more priority, but it can update the particle location more often. As a result, By choosing the best strategies, SSLPSO can obtain the best optimal responses for SVM parameters (i.e., sigma parameter (sigma), penalty parameter (C) and the features available in the dataset), therefore that the SVM technique can accurately detect Android botnet. The results obtained from the SSLPSO-SVM approach showed the superiority of this technique not only in four different measures of Sensitivity, Specificity, Precision, and Accuracy but also at the time of implementation of the proposed model in comparison with the other three methods. Finally, the top 20 features of Android botnet are introduced using the best results from the 28 Android Botnet dataset outputs. (C) 2021 Elsevier B.V. All rights reserved.
机译:近年来,在检测Android僵尸网络的领域进行了广泛的研究,但大多数介绍的方法都可以为有限数量的这些数据集提供良好的答案。现在问题是如何介绍一种在各种Android Botnets上提供高检测率的方法。为了回答这个问题,我们提出了一个智能自适应基于学习的粒子群优化优化支持向量机(SSLPSO-SVM)方法,以高精度地识别Android Botnet。 SSLPSO算法同时使用五种不同的扫描搜索空间策略,这是基于PSO算法的扫描空间。 SSLPSO而不是使用轮盘键选择方法选择策略,而不是选择智能选择策略(SSS)的新方法。该方法基于在执行的每个阶段,基于在执行中的个人最佳(PBEST)和全局最佳(GBEST)粒子中创建的变化的数量来确定实现的频率和每个策略的优先级。换句话说,在实施的前一步中,能够在PBEST和GBEST中做出更多变化的策略;在下一步中,不仅可以更优先级,而且可以更频繁地更新粒子位置。结果,通过选择最佳策略,SSLPSO可以获得SVM参数(即Sigma参数(Sigma),惩罚参数(C)和数据集中可用的功能的最佳最佳响应,因此SVM技术可以准确检测Android Botnet。从SSLPSO-SVM方法获得的结果表明,该技术的优越性不仅在四种不同的灵敏度,特异性,精度和准确度,而且在实现所提出的模型的情况下与其他三种方法相比,该技术的优越性也是如此。最后,使用28 Android Botnet数据集输出的最佳结果引入了Android Botnet的前20个功能。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号