首页> 外文期刊>Knowledge-Based Systems >MOEO-EED: A multi-objective equilibrium optimizer with exploration-exploitation dominance strategy
【24h】

MOEO-EED: A multi-objective equilibrium optimizer with exploration-exploitation dominance strategy

机译:Moeo-EED:具有勘探开发优势策略的多目标均衡优化器

获取原文
获取原文并翻译 | 示例

摘要

The work proposes multi-objective variants of the recently-proposed equilibrium optimizer (EO) using an archive to obtain Pareto optimal solutions and a crowding distance approach to preserve the diversity among the non-dominated solutions. However, due to the use of constant values for the controlling parameters of EO, the exploration and exploitation of multi-objective EO (MOEO) are not accelerated, so the first variant is proposed with a number of linear and non-linear equations to generate increasing and decreasing values proportional to the number of iterations that will eventually improve exploratory and exploitative behaviors of MOEO. In the second proposed variant of MOEO with exploration-exploitation dominance strategy (MOEO-EED), solutions are updated according to the number of dominated solutions. If a solution has a high number of dominated solutions, it will go through fewer abrupt changes, while others will undergo major changes. In addition, a novel strategy known as a Gaussian-based mutation (G) strategy is proposed to use the Gaussian distribution to generate two different step sizes: small step sizes that are generated under a small sigma value for the Gaussian distribution to promote the exploitation capability, and high step sizes under a high sigma value to increase the exploration operator. The tradeoff between those two-step sizes is predefined through experimentation. This strategy is integrated to generate the third variant, namely MOEO-EED-G. In the fourth variant (OMOEO-EED-G), the tradeoff between the best solution selected from the archive and its opposite is achieved with a probability to increase the diversity and accelerate the convergence of MOEO-EED-G. Finally, the efficacy of the proposed algorithms is tested on four benchmark multi-objective functions to show that the proposed algorithms, especially OMOEO-EED-G, are superior to selected state-of-the-art multi-objective algorithms. (C) 2020 Elsevier B.V. All rights reserved.
机译:该工作提出了使用档案的最近提出的均衡优化器(EO)的多目标变体,以获得Pareto最佳解决方案和拥挤的距离方法,以保护非主导的解决方案之间的多样性。但是,由于使用恒定值的EO控制参数,不加速多目标EO(MOOO)的探索和开发,因此提出了多个线性和非线性方程来产生的第一变体增加和减少与最终改善Moeo的探索性和剥削行为的迭代次数成比例。在利用勘探开发优势策略(Moeo-EED)的第二个提出的Moeo变体中,根据主导解决方案的数量更新解决方案。如果解决方案具有大量主导的解决方案,它将经历更少的突然变化,而其他人将经历重大变化。此外,提出了一种称为基于高斯的突变(g)策略的新策略,以使用高斯分布来产生两种不同的步骤尺寸:在小sigma值下产生的小步尺寸,以促进剥削能力和高级别尺寸在高Σ值下增加勘探操作员。这些两步尺寸之间的权衡是通过实验预定义的。该策略集成以产生第三种变体,即Moeo-EED-g。在第四变型(OMOEO-EED-G)中,从存档中选择的最佳解决方案之间的权衡,以增加多样性并加速Moeo-EED-G的收敛性的概率来实现。最后,在四个基准多目标函数上测试了所提出的算法的功效,以证明所提出的算法,特别是OMOEO-EED-G,优于所选择的最先进的多目标算法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号