首页> 外文期刊>Knowledge-Based Systems >A deep learning based image enhancement approach for autonomous driving at night
【24h】

A deep learning based image enhancement approach for autonomous driving at night

机译:基于深入的学习图像增强方法在夜间自主驾驶

获取原文
获取原文并翻译 | 示例

摘要

Images of road scenes in low-light situations are lack of details which could increase crash risk of connected autonomous vehicles (CAVs). Therefore, an effective and efficient image enhancement model for low-light images is necessary for safe CAV driving. Though some efforts have been made, image enhancement still cannot be well addressed especially in extremely low light situations (e.g., in rural areas at night without street light). To address this problem, we developed a light enhancement net (LE-net) based on the convolutional neural network. Firstly, we proposed a generation pipeline to transform daytime images to low-light images, and then used them to construct image pairs for model development. Our proposed LE-net was then trained and validated on the generated low-light images. Finally, we examined the effectiveness of our LE-net in real night situations at various low-light levels. Results showed that our LE-net was superior to the compared models, both qualitatively and quantitatively. (C) 2020 Elsevier B.V. All rights reserved.
机译:低光线情况下的道路场景图像缺乏可能提高连接自动车辆(CAV)的碰撞风险。因此,安全孔驱动是必要的用于低光图像的有效和有效的图像增强模型。虽然已经进行了一些努力,但图像增强仍然不能很好地解决,特别是在极低的光线情况下(例如,在没有街灯的夜间农村地区)。为了解决这个问题,我们基于卷积神经网络开发了一种光增强网(LE-NET)。首先,我们提出了一个生成管道来将白天图像转换为低光图像,然后使用它们来构造图像对进行模型开发。然后,我们提出的Le-Net培训并在生成的低光图像上验证。最后,我们在各种低光级中检查了我们的LE-NET在实际情况下的有效性。结果表明,我们的LE-NET优于比较模型,包括定性和定量。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第15期|106617.1-106617.14|共14页
  • 作者单位

    Shenzhen Univ Coll Mechatron & Control Engn Inst Human Factors & Ergon Shenzhen 518060 Guangdong Peoples R China|Univ Waterloo Dept Mech & Mechatron Engn Waterloo ON N2L 3G1 Canada;

    Shenzhen Univ Coll Mechatron & Control Engn Inst Human Factors & Ergon Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Mechatron & Control Engn Inst Human Factors & Ergon Shenzhen 518060 Guangdong Peoples R China;

    Univ Waterloo Dept Mech & Mechatron Engn Waterloo ON N2L 3G1 Canada;

    Tsinghua Univ Sch Vehicle & Mobil State Key Lab Automot Safety & Energy Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Driving safety; Driver assistance systems; Autonomous vehicles; Image enhancement; Deep learning;

    机译:驾驶安全;驾驶员辅助系统;自治车辆;图像增强;深入学习;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号