首页> 外文期刊>Knowledge-Based Systems >Building energy consumption models based on smartphone user's usage patterns
【24h】

Building energy consumption models based on smartphone user's usage patterns

机译:基于智能手机用户使用模式构建能耗模型

获取原文
获取原文并翻译 | 示例

摘要

The increasing usage of smartphones in everyday tasks has been motivated many studies on energy consumption characterization aiming to improve smartphone devices' effectiveness and increase user usage time. In this scenario, it is essential to study mechanisms capable of characterizing user usage patterns, so smartphones' components can be adapted to promote the best user experience with lower energy consumption. The goal of this study is to build an energy consumption model based on user usage patterns aiming to provide the best accurate model to be used by application developers and automated optimization. To develop the energy consumption models, we established a method to identify the components with the most influence in the smartphone's energy consumption and identify the states of each influential device. Besides that, we established a method to prove the robustness of the models constructed using inaccurate hardware and a strategy to assess the accuracy of the model built. After training and testing each strategy to model the energy consumption based on the user's usage and perform the Nemenyi test, we demonstrated that it is possible to get a Mean Absolute Error of 158.57 mW when the smartphone's average power is 1970.1 mW. Some studies show that the leading smartphone's workload is the user. Based on this fact, we developed an automatic model building methodology that is capable of analyzing the user's usage data and build smart models that can estimate the smartphone's energy consumption based on the user's usage pattern. With the automatic model building methodology, we can adopt strategies to minimize the usage of components that drain the battery. (C) 2020 Elsevier B.V. All rights reserved.
机译:日常任务中智能手机的增加已经有动力研究了旨在提高智能手机设备的有效性并提高用户使用时间的能耗表征的研究。在这种情况下,必须研究能够表征用户使用模式的机制,因此智能手机组件可以适于促进能耗较低的最佳用户体验。本研究的目标是基于用户使用模式构建能量消耗模型,该模式旨在提供应用开发人员和自动化优化的最佳准确模型。为了开发能量消耗模型,我们建立了一种方法来识别具有最大影响的组件,在智能手机的能量消耗中具有最大影响,并识别每个有影响力的设备的状态。除此之外,我们建立了一种方法来证明使用不准确的硬件构建的模型的稳健性,以及评估模型建造的模型的准确性的策略。在培训和测试每个策略以基于用户的使用来模拟能量消耗并执行Nemenyi测试,我们证明了当智能手机的平均功率为1970.1 MW时,可以获得158.57 MW的平均绝对误差。一些研究表明,领先的智能手机的工作量是用户。基于这一事实,我们开发了一种自动模型建筑方法,能够分析用户的使用数据并构建可以根据用户的使用模式估算智能手机的能源消耗的智能模型。通过自动模型建筑方法,我们可以采用策略来最大限度地减少排出电池的组件的使用。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号