首页> 外文期刊>Knowledge-Based Systems >An adaptive deep learning method for item recommendation system
【24h】

An adaptive deep learning method for item recommendation system

机译:项目推荐系统的自适应深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

For many years user textual reviews have been exploited to model user/item representations for enhancing the performance of the Recommender System (RS). However, the traditional methods of the RSs basically rely on the static user/item feature vectors and ignore the fine-grained user-item interactions which could affect the accuracy of the RSs. Thus, this paper proposes a RS model that exploits neural attention techniques to learn adaptive user/item representations and fine-grained user-item interaction for enhancing the accuracy of the item recommendation. An attentive pooling layer is first designed based on the Convolutional Neural Network (CNN) to learn the adaptive latent features of the user/item from reviews. A mutual attention network technique is then introduced for modelling the fine-grained user-item interaction to enable jointly capturing the most informative features at the higher granularity. Finally, a prediction layer is then applied for the final prediction based on the adaptive user/item representation and the user/item importance. We extensively conduct a series of experiments using Amazon and Yelp reviews, and the results demonstrate that our proposed model performs better than the existing methods in terms of both rating prediction and ranking performances. Statistical paired test show that all the performance improvements are significant at p0.05. (C) 2020 Elsevier B.V. All rights reserved.
机译:多年来,用户文本评论已被利用到模拟用户/项目表示以增强推荐系统(RS)的性能。但是,RSS的传统方法基本上依赖于静态用户/项目特征向量,并忽略可能影响RSS精度的细粒度的用户项交互。因此,本文提出了一种RS模型,用于利用神经关注技术来学习自适应用户/项目表示和细粒度的用户项目交互,以提高项目推荐的准确性。首先基于卷积神经网络(CNN)设计一部分汇集层,以学习来自评论的用户/项目的自适应潜在特征。然后引入相互关注网络技术,用于对细粒化用户项交互进行建模,以使能在更高的粒度下联合捕获最具信息性的特征。最后,基于自适应用户/项目表示和用户/项目重要性应用预测层以用于最终预测。我们广泛地使用亚马逊和yelp评论进行一系列实验,结果表明,我们所提出的模型在评级预测和排名性能方面表现优于现有方法。统计配对试验表明,所有性能改善在P <0.05时都很显着。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号