首页> 外文期刊>Knowledge-Based Systems >A bi-objective optimization method to produce a near-optimal number of classifiers and increase diversity in Bagging
【24h】

A bi-objective optimization method to produce a near-optimal number of classifiers and increase diversity in Bagging

机译:一种生成近最佳分类器数量的双目标优化方法,提高袋装的多样性

获取原文
获取原文并翻译 | 示例

摘要

Bagging is an old and powerful method in ensemble learning which creates an ensemble of classifiers over bootstraps through learning and then generates diverse classifiers. There are two main challenges in bagging method: (1) using bootstraps lead to less diversity compared to other ensemble methods, (2) since one cannot predetermine the number of bootstraps in bagging, some redundant classifiers may be generated which leads to lower classification speed, more need to memory and weakening the efficiency of bagging. In this paper, a new method is proposed based on the above-mentioned challenges which utilizes a multi-objective optimization approach with the two objectives of accuracy and diversity. Taking these two objectives simultaneously into account, some (near-optimal) bags are generated, where these number of bags (the least possible number of bags) are used for training the classifiers in bagging and lead to creating diverse and accurate bags. In this method, diverse bags are generated, while the redundant ones are pruned, simultaneously. The used objective function in calculating diversity is a new method that thoroughly computes the diversity among all bags. Reviewing the literature in this context and to the best of authors' knowledge, one can imply that the proposed method is the first research that can generate accurate and diverse bags with the least possible number of bags using a multi-objective optimization approach. The classifiers are ultimately learned based on these generated bags. Experimental results by investigating 20 datasets and comparing the proposed method with 7 state-of-the-art methods show that the proposed approach generates fewer classifiers, while has higher accuracy. Moreover, according to the conducted nonparametric statistical tests, it is illustrated that the proposed method significantly outperforms the other methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:Bagging是一种在集合学习中的一种古老而强大的方法,它通过学习创建了一个在举止上的分类器的集合,然后生成不同的分类器。装袋方法中有两个主要挑战:(1)与其他集合方法相比,使用举止导致较少的多样性,(2)由于一个人不能预先确定袋装中的引导率的数量,因此可以产生一些冗余分类器,这导致较低的分类速度,更需要记忆并削弱袋装的效率。在本文中,基于上述挑战提出了一种新方法,该挑战利用了多目标优化方法,其两个准确性和多样性的目标。将这两个目标同时考虑在内,产生一些(近最佳)袋,其中这些袋子(最少可能数量的袋子)用于训练装袋中的分类器并导致创造多样化和准确的袋子。在这种方法中,产生不同的袋子,而冗余的袋子同时被修剪。在计算多样性方面的使用目标函数是一种新方法,可以彻底计算所有袋子之间的多样性。在这种情况下审查文献并据作者所知,可以暗示提出的方法是第一次研究,可以使用多目标优化方法具有最少可能数量的袋子产生准确和多样化的袋子。基于这些生成的袋子最终学习了分类器。通过研究20个数据集并将提出的方法与7个最先进的方法进行比较的实验结果表明,所提出的方法产生更少的分类器,而具有更高的准确性。此外,根据进行的非参数统计测试,示出了所提出的方法显着优于其他方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号