首页> 外文期刊>Knowledge-Based Systems >Continual learning classification method with constant-sized memory cells based on the artificial immune system
【24h】

Continual learning classification method with constant-sized memory cells based on the artificial immune system

机译:基于人工免疫系统的恒定尺寸存储器单元的连续学习分类方法

获取原文
获取原文并翻译 | 示例

摘要

Most classification methods cannot further improve their classification performance by learning the testing data during the testing stage, for lacking continual learning ability. A new classification method, continual learning classification method with constant-sized memory cells based on the artificial immune system (C-CLCM), is proposed. It is inspired by the continual learning mechanism of the biological immune system. C-CLCM gradually enhances its classification performance by continually learning the testing data especially the new types of labeled data and new types of unlabeled data during the testing stage. At the same moment, it updates the existing memory cells and culture new types of memory cells. C-CLCM degenerates into a common supervised learning classification method under certain conditions. To assess its performance and possible advantages, the experiments on well-known datasets from the UCI repository were performed. Results show that C-CLCM has better classification performance when it degenerates into a common supervised learning classification method. It outperforms the other methods when the training data do not cover all types. The less type of training, the more advantages it has. (C) 2020 Elsevier B.V. All rights reserved.
机译:对于缺乏持续的学习能力,大多数分类方法不能通过学习测试数据来进一步提高他们的分类性能。提出了一种新的分类方法,基于人工免疫系统(C-C1CM)的恒定尺寸存储器单元的连续学习分类方法。它受到生物免疫系统的持续学习机制的启发。 C-CLCM通过在测试阶段不断地学习测试数据,特别是在测试阶段的新类型标记数据和新类型的未标记数据中逐渐增强其分类性能。在同一时刻,它更新现有的存储器单元和培养新类型的存储器单元。 C-CLCM在某些条件下退化为共同的监督学习分类方法。为了评估其性能和可能的优点,执行来自UCI存储库的众所周知的数据集的实验。结果表明,当纳入共同的监督学习分类方法时,C-CLCM具有更好的分类性能。当培训数据不涵盖所有类型时,它才能表达其他方法。培训类型较少,优势越多。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第15期|106673.1-106673.14|共14页
  • 作者单位

    Changzhou Univ Sch Petr Engn Changzhou 213164 Peoples R China|Hong Kong Univ Sci & Technol Dept Chem & Biol Engn Kowloon Clear Water Bay Hong Kong Peoples R China;

    Shanghai Univ Sch Mechatron Engn & Automat Shanghai 200072 Peoples R China;

    Hong Kong Univ Sci & Technol Dept Chem & Biol Engn Kowloon Clear Water Bay Hong Kong Peoples R China;

    Shanghai Univ Sch Mechatron Engn & Automat Shanghai 200072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial immune system; Classification; Clustering; Continual learning; Machine learning;

    机译:人工免疫系统;分类;聚类;持续学习;机器学习;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号