首页> 外文期刊>Knowledge-Based Systems >Leveraging unstructured call log data for customer churn prediction
【24h】

Leveraging unstructured call log data for customer churn prediction

机译:利用非结构化的呼叫日志数据进行客户流失预测

获取原文
获取原文并翻译 | 示例

摘要

Customer retention is important in the financial services industry. Machine learning has been incorporated into customer data analytics to predict client churn risks. Despite its success, existing approaches primarily use only structured data, e.g., demographics and account history. Data mining with unstructured data, e.g., customer interaction, can reveal more insights, which has not been adequately leveraged. In this research, we propose a customer churn prediction model utilizing the unstructured data, which is the spoken contents in phone communication. We collected a large-scale call center dataset with two million calls from more than two hundred thousand customers and conducted extensive experiments. The results show that our model can accurately predict the client churn risks and generate meaningful insights using interpretable machine learning with personality traits and customer segments. We discuss how these insights can help managers develop retention strategies customized for different customer segments. (C) 2020 Elsevier B.V. All rights reserved.
机译:客户保留在金融服务业中很重要。机器学习已被纳入客户数据分析,以预测客户端流失风险。尽管其成功,现有方法主要仅使用结构化数据,例如人口统计数据和帐户历史。具有非结构化数据的数据挖掘,例如客户互动,可以揭示更多的见解,这尚未充分利用。在本研究中,我们提出了利用非结构化数据的客户流失预测模型,这是手机通信中的口头内容。我们收集了一个大型呼叫中心数据集,超过两百多万客户的呼叫,并进行了广泛的实验。结果表明,我们的模型可以准确地预测客户流失风险,并使用与人格特征和客户群体的可解释机器学习产生有意义的见解。我们讨论这些见解如何帮助管理人员开发为不同客户群体定制的保留策略。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号