首页> 外文期刊>Knowledge-Based Systems >Recurrent neural network with pooling operation and attention mechanism for sentiment analysis: A multi-task learning approach
【24h】

Recurrent neural network with pooling operation and attention mechanism for sentiment analysis: A multi-task learning approach

机译:经常性神经网络,具有汇集操作和情感分析的关注机制:多任务学习方法

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis is designed to classify documents into a fixed number of pre-defined categories that represent different sentiments. Focusing on the limitation of insufficient training data, multi-task learning models based on deep learning have recently achieved significant progress in this field. In general, these models leverage multiple datasets annotated for different tasks to improve the performance on each individual dataset. The improvement is particularly evident on tasks with limited training data. However, most of these models suffer from two limitations. First, they use the final output of the hidden layer as the overall representation of the text, which initially loses a certain amount of semantic information. Second, although some of them utilize a certain gate mechanism to select shared features, some irrelevant shared features are erroneously used owing to polysemy. To address these two limitations, we integrate a pooling layer into a Bi-directional Recurrent Neural Network (BRNN) to extract semantic information comprehensively. We then apply the attention mechanism between shared layers and task-specific layers to identify the effective shared features, and propose an Attention-based Separate Pooling BRNN (ASP-BRNN) model. We conduct experiments to show the effectiveness of our models on four datasets (SST1, SST2, SUBJ, and IMDB), and the accuracy of our models increases steadily by approximately 0.5% for each model. It proves the effectiveness of every newly added component in solving the two problems. A further evaluation on eight datasets shows our proposed ASP-BRNN model outperforms current state-of-the-art models, such as ASP-MTL model (at least +0.2% on Electronics and at most +6.9% on IMDB), MT-ARC-II model (at least +0.2% on SST2 and at most +3.8% on DVDs). (C) 2020 Published by Elsevier B.V.
机译:情绪分析旨在将文档分类为代表不同情绪的固定数量的预定义类。专注于培训数据不足的限制,基于深度学习的多任务学习模型最近在这一领域取得了重大进展。通常,这些模型利用了用于不同任务的多个数据集以提高每个数据集的性能。在具有有限培训数据的任务方面尤其明显。然而,这些模型中的大多数遭受了两个限制。首先,它们使用隐藏层的最终输出作为文本的总体表示,其最初失去一定量的语义信息。其次,虽然它们中的一些利用某个栅极机制来选择共享特征,但由于多义,一些无关的共享特征是错误地使用的。为了解决这两个限制,我们将汇集层集成到双向复发性神经网络(BRNN)中,以全面提取语义信息。然后,我们将共享层和特定于特定层之间的注意机制应用于识别有效的共享特征,并提出了基于注意的单独池BRNN(ASP-BRNN)模型。我们进行实验,以显示我们的模型在四个数据集(SST1,SST2,Subj和IMDB)上的有效性,并且我们模型的准确性为每个模型的0.5%稳定增加。它证明了每个新添加的组分在解决两个问题方面的有效性。关于八个数据集的进一步评估显示我们所提出的ASP-BRNN模型优于当前最先进的模型,例如ASP-MTL模型(电子设备至少+ 0.2%,在IMDB上最多+ 6.9%),MT- ARC-II模型(SST2上至少+ 0.2%,DVD上最多+ 3.8%)。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第5期|105856.1-105856.12|共12页
  • 作者单位

    South China Univ Technol Sch Software Engn Guangzhou Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou Peoples R China|Guangxi Univ Sch Elect Engn Nanning Guangxi Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou Peoples R China;

    Hong Kong Polytech Univ Dept Comp Hung Hom Kowloon Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sentiment analysis; Opinion mining; Recurrent neural network; Multi-task; Attention mechanism;

    机译:情绪分析;意见挖掘;经常性神经网络;多任务;注意机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号