首页> 外文期刊>Knowledge-Based Systems >Hybrid artificial neural network and cooperation search algorithm for nonlinear river flow time series forecasting in humid and semi-humid regions
【24h】

Hybrid artificial neural network and cooperation search algorithm for nonlinear river flow time series forecasting in humid and semi-humid regions

机译:潮湿与半湿地区非线性河流流量序列预测的混合人工神经网络与合作搜索算法

获取原文
获取原文并翻译 | 示例

摘要

Accurate river flow forecasting is of great importance for the scientific management of water resources system. With the advantages of easy implementation and high flexibility, artificial neural network (ANN) has been widely employed to address the complex hydrological forecasting problem. However, the conventional ANN method often suffers from some defects in practice, like slow convergence and local minimum. In order to enhance the ANN performance, this study proposes a hybrid river flow forecasting method by integrating the novel cooperation search algorithm (CSA) into the learning process of ANN. In other words, the computational parameters of the ANN network (like threshold and linking weights) are iteratively optimized by the CSA method in the feasible state space. The proposed method is applied to the river flow data collected from two real-world hydrological stations in China. Several Quantitative indexes are chosen to compare the performance of the developed models, while the comprehensive analysis between the simulated and observed flow data are conducted. The experimental results show that in different scenarios, the hybrid method based on ANN and CSA always outperforms the control models and yields superior forecasting results during both training and testing phases. In Three Gorges Project, the presented method makes 11.10% and 5.42% improvements in the Nash-Sutcliffe efficiency and Coefficient correlation values of the standard ANN method in the testing phase. Thus, this interesting finding shows that the performance of the artificial intelligence models in river flow time series forecasting can be effectively improved by metaheuristic algorithm with outstanding global search ability. (C) 2020 Elsevier B.V. All rights reserved.
机译:准确的河流流量预测对于水资源系统的科学管理是重要的。随着实施方便的优点和高灵活性,人工神经网络(ANN)已被广泛用于解决复杂的水文预报问题。然而,传统的ANN方法经常在实践中遭受一些缺陷,如缓慢的收敛和局部最小。为了提高ANN绩效,本研究提出了一种通过将新颖的合作搜索算法(CSA)集成到ANN的学习过程中来提出混合河流流量预测方法。换句话说,ANN网络(如阈值和链接权重)的计算参数通过可行状态空间中的CSA方法迭代地优化。所提出的方法适用于中国两岸水文站收集的河流流量数据。选择若干定量指标以比较开发模型的性能,而进行模拟和观察流程数据之间的综合分析。实验结果表明,在不同的场景中,基于ANN和CSA的混合方法总是优于控制模型,并在训练和测试阶段产生优异的预测结果。在三峡工程中,呈现的方法在测试阶段中的标准ANN方法的纳什 - Sutcliffe效率和系数相关值提高了11.10%和5.42%。因此,这种有趣的发现表明,通过具有出色的全球搜索能力的成群质算法,可以有效地改善了河流流时间序列预测中的人工智能模型的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号