首页> 外文期刊>Knowledge-Based Systems >Late acceptance-based heuristic algorithms for identifying critical nodes of weighted graphs
【24h】

Late acceptance-based heuristic algorithms for identifying critical nodes of weighted graphs

机译:基于后期验收的启发式算法,用于识别加权图的关键节点

获取原文
获取原文并翻译 | 示例

摘要

Identifying critical nodes is an efficient way to analyze and apprehend the properties, structures, and functions of complex networks, which is a challenging NP-hard problem. This paper studies a node-weighted version of the critical node problem (NWCNP) that involves minimization of pairwise connectivity measure of a given node-weighted graph via the removal of a subset of nodes (i.e., critical nodes), subject to a budgetary constraint. In this paper, we present two effective iterated local search algorithms for NWCNP. Our proposed algorithms iterate through two complementary search procedures. A local search procedure adopting a constrained neighborhood and late acceptance strategy is employed to find a local optimum from a given starting solution. Then, a destructive-constructive perturbation procedure is used to escape from a local optimum. We conduct extensive computational experiments with two categories of 32 benchmark instances that reveal our proposed algorithms can achieve the best upper bounds for 28 instances and are highly competitive compared to baseline algorithm. In particular, our algorithms achieved better performance on the first category of instances with random weighting than that on the second category of instances with logarithmic weighting. We also investigate the influence of history length and perturbation coefficient on the performance of the proposed algorithms. (C) 2020 Elsevier B.V. All rights reserved.
机译:识别关键节点是分析和逮捕复杂网络的属性,结构和功能的有效方法,这是一个具有挑战性的NP难题。本文研究了关键节点问题的节点加权版本(NWCNP),涉及通过删除通过预算约束而去除节点的子集(即临界节点)的子集最小化给定节点加权图的成对连接度量。在本文中,我们为NWCNP提供了两个有效的迭代本地搜索算法。我们所提出的算法遍历两个互补的搜索程序。采用受约束邻域和后期验收策略的本地搜索程序来查找来自给定启动解决方案的本地最佳。然后,使用破坏性 - 建设性的扰动过程来逃避局部最佳。我们通过两类32个基准实例进行了广泛的计算实验,揭示了我们所提出的算法可以实现28个实例的最佳上限,与基线算法相比具有竞争力。特别是,我们的算法在具有随机加权的第一类实例上实现了比具有对数加权的第二类实例上的第一类实例的性能。我们还研究了历史长度和扰动系数对所提出的算法的性能的影响。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第9期|106562.1-106562.11|共11页
  • 作者单位

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China|East China Univ Sci & Technol Sch Informat Sci & Engn Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China|East China Univ Sci & Technol Sch Informat Sci & Engn Shanghai 200237 Peoples R China;

    Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China;

    Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen 518172 Peoples R China|Chinese Univ Hong Kong Inst Robot & Intelligent Mfg Shenzhen 518172 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Combinatorial optimization; Metaheuristics; Late acceptance strategy; Critical node problem; Node-weighted graph;

    机译:组合优化;半养殖;迟到的验收策略;关键节点问题;节点加权图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号