首页> 外文期刊>Knowledge-Based Systems >CFSRE: Context-aware based on frame-semantics for distantly supervised relation extraction
【24h】

CFSRE: Context-aware based on frame-semantics for distantly supervised relation extraction

机译:CFSRE:基于帧语义的上下文感知,用于远程监督关系提取

获取原文
获取原文并翻译 | 示例

摘要

In relation extraction with distant supervision, noise labels are a bottleneck problem that hinders the performance of training models. Existing neural models solved this problem using attention mechanisms or multi-instance/multi-label learning to select sentences that are likely to express the relations. They mainly focused on the structural information of entity pairs and ignored semantic information of relation-clue words. Furthermore, these models do not consider the semantic scenario information of an entity pair (As the same entity pair may express different relations in different semantic scenarios). To bridge the gap, this paper proposes a novel model for relation extraction based on frame-semantics, namely Context-aware based on Frame-semantics for Distantly Supervised Relation Extraction (CFSRE). The model combines a hierarchical neural network architecture with FrameNet semantic knowledge base to solve the noise labels and the semantic representation of entity pairs. More specifically, a simple and effective instance selection method is used to select informative positive instances for model training. In addition, we propose a novel sentence representation method by combining sentence context representation with frame semantic representation of entities. We find that the joint representation leads to a better performance because it can obtain more comprehensive semantic representation of text instances. Then, a hierarchical-attention mechanism has been designed to select the most informative features for relation extraction. Finally, a softmax classifier is used to test the performance of the model. Experiments were conducted on two widely used benchmark datasets. The results demonstrate that the proposed method is significantly better than state-of-the-art methods for distantly supervised relation extraction. (C) 2020 Elsevier B.V. All rights reserved.
机译:在遥远监督的关系中,噪声标签是阻碍培训模型性能的瓶颈问题。现有的神经模型使用注意机制或多实例/多标签学习解决了此问题,以选择可能表达关系的句子。它们主要专注于实体对的结构信息,并忽略了关系线索词的语义信息。此外,这些模型不考虑实体对的语义情景信息(因为相同的实体对可以表达不同语义方案中的不同关系)。为了弥合差距,基于帧语义的基于帧语义的关系提取新颖的模型,即基于帧语义的上下文感知,用于远处监督关系提取(CFSRE)。该模型将分层神经网络架构与FrameNet语义知识库相结合,以解决实体对的噪声标签和语义表示。更具体地,简单且有效的实例选择方法用于选择用于模型训练的信息性积极实例。此外,我们通过将句子上下文表示与实体的帧语义表示组合来提出一种新的句子表示方法。我们发现联合代表会导致更好的性能,因为它可以获得更全面的文本实例的语义表示。然后,设计了分层关注机制,用于选择用于关系提取的最具信息性的功能。最后,SoftMax分类器用于测试模型的性能。在两个广泛使用的基准数据集中进行实验。结果表明,该方法明显优于最终监督关系提取的最先进方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第27期|106480.1-106480.13|共13页
  • 作者单位

    Shanxi Univ Sch Comp & Informat Technol Taiyuan Shanxi Peoples R China|Taiyuan Univ Sci & Technol Sch Comp Sci & Technol Taiyuan Shanxi Peoples R China;

    Shanxi Univ Sch Comp & Informat Technol Taiyuan Shanxi Peoples R China|Shanxi Univ Minist Educ Key Lab Computat Intelligence & Chinese Informat Taiyuan Shanxi Peoples R China;

    Inst Infocomm Res Singapore Singapore;

    Shanxi Univ Sch Comp & Informat Technol Taiyuan Shanxi Peoples R China|Shanxi Univ Minist Educ Key Lab Computat Intelligence & Chinese Informat Taiyuan Shanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Distantly supervised relation extraction; Semantic scenario; Attention mechanism;

    机译:远方监督的关系提取;语义情景;注意机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号