首页> 外文期刊>Knowledge-Based Systems >Predicting taxi demands via an attention-based convolutional recurrent neural network
【24h】

Predicting taxi demands via an attention-based convolutional recurrent neural network

机译:通过关注的卷积经常性神经网络预测出租车需求

获取原文
获取原文并翻译 | 示例

摘要

As a flexible public transportation in urban areas, taxis play an important role in providing comfortable and convenient services for passengers. Due to the existence of the imbalance between supply of drivers and demand of passengers, an accurate fine-grained taxi demand prediction in real time can help guide drivers to plan their routes and reduce the waiting time of passengers. Recently, several methods based on deep neural networks have been provided to predict taxi demands. However, these works are limited in properly incorporating multi-view features of taxi demands together, with considering the influences of context information. In this paper, we propose a convolutional recurrent network model for fine-grained taxi demand prediction. Local convolutional layers and gated recurrent units are employed in our model to extract multi-view spatial-temporal features of taxi demands. Moreover, a novel context-aware attention module is designed to incorporate the predictions of each region with considering its contextual information, which is our first attempt. We also conduct comprehensive experiments based on multiple real-world datasets in New York City and Chengdu. The experimental results show that our model outperforms state-of-the-art methods, and validate the usefulness of each module in our model. (C) 2020 Elsevier B.V. All rights reserved.
机译:作为城市地区灵活的公共交通,出租车在为乘客提供舒适方便的服务方面发挥着重要作用。由于存在乘客的驾驶员和需求之间不平衡的不平衡,实时准确的细粒度的出租车需求预测可以帮助引导司机计划他们的路线并减少乘客的等待时间。最近,已经提供了基于深度神经网络的几种方法来预测出租车需求。然而,考虑到情境信息的影响,这些作品在适当地结合在一起的多视图需求的多视图特征。本文提出了一种卷积的循环循环性网络模型,用于细粒度的出租车需求预测。我们的模型中采用了本地卷积层和门控复发单元,以提取出租车需求的多视图空间时间特征。此外,考虑其第一次尝试,设计了一种新的上下文感知注意力模块以结合每个区域的预测,这是我们的第一次尝试。我们还根据纽约市和成都的多个现实世界数据集进行全面的实验。实验结果表明,我们的模型优于最先进的方法,并验证了我们模型中每个模块的有用性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号