首页> 外文期刊>Knowledge-Based Systems >Sparse and low-rank regularized deep subspace clustering
【24h】

Sparse and low-rank regularized deep subspace clustering

机译:稀疏和低级正则化深度子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Subspace clustering aims at discovering the intrinsic structure of data in unsupervised fashion. As ever in most of approaches, an affinity matrix is constructed by learning from original data or the corresponding hand-crafted feature with some constraints on the self-expressive matrix (SEM), which is then followed by spectral clustering algorithm. Based on successful applications of deep technologies, it has become popular to simultaneously accomplish deep feature and self-representation learning for subspace clustering. However, deep feature and SEM in previous deep methods are lack of precise constraints, which is sub-optimal to conform with the linear subspace model. To address this, we propose an approach, namely sparse and low-rank regularized deep subspace clustering (SLR-DSC). In the proposed SLR-DSC, an end-to-end framework is proposed by introducing sparse and low-rank constraints on deep feature and SEM respectively. The sparse deep feature and low-rank regularized SEM implemented via fully-connected layers are encouraged to facilitate a more informative affinity matrix. In order to solve the nuclear norm minimization problem, a sub-gradient computation strategy is utilized to cater to the chain rule. Experiments on the data sets demonstrate that our method significantly outperforms the competitive unsupervised subspace clustering approaches. (C) 2020 Elsevier B.V. All rights reserved.
机译:子空间集群旨在发现无监督的时尚数据的内在结构。与大多数方法一样,通过从原始数据或相应的手工制作的特征学习具有一些约束的亲和矩阵,然后是自我达视矩阵(SEM),然后是光谱聚类算法。基于深度技术的成功应用,它已经很受欢迎,同时为子空间聚类进行深度特征和自我代表学习。然而,先前深度方法中的深度特征和SEM缺乏精确的约束,这是符合线性子空间模型的次优。为了解决这个问题,我们提出了一种方法,即稀疏和低级正则化的深度子空间聚类(SLR-DSC)。在所提出的SLR-DSC中,通过分别在深度特征和SEM上引入稀疏和低秩约束来提出端到端框架。鼓励通过完全连接的图层实现稀疏的深度特征和低级正则化SEM,以促进更充分的信息性的亲和矩阵。为了解决核规范最小化问题,利用子梯度计算策略迎合链规则。数据集上的实验表明,我们的方法显着优于竞争无监督的子空间聚类方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号