机译:通过集体学习解决流量分类组合子流模型的火车测试差距
Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;
Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China|Tsinghua Univ Ctr Intelligent & Networked Syst Beijing Peoples R China;
Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;
Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;
Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China|Xi An Jiao Tong Univ Res Inst Hangzhou Zhejiang Peoples R China;
Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;
Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;
Network traffic classification; train-test gap; Subflow; Ensemble learning;
机译:使用集合学习模型的Internet流量的应用层分类
机译:使用深度学习模型的勒索软件流量分类:勒索软件流量分类
机译:流相关和集成分类器相结合的流量分类
机译:基于子流特征和集成学习的流量分类方法
机译:用于数据包分类的神经网络架构和合奏:解决通信网络中的服务挑战的可见性,安全性和质量
机译:使用深度学习模型的集合增强基于图像的内窥镜病理站点分类
机译:使用集合学习技术加密网络流量分类