首页> 外文期刊>Knowledge-Based Systems >Addressing the train-test gap on traffic classification combined subflow model with ensemble learning
【24h】

Addressing the train-test gap on traffic classification combined subflow model with ensemble learning

机译:通过集体学习解决流量分类组合子流模型的火车测试差距

获取原文
获取原文并翻译 | 示例

摘要

Previous machine learning-based network traffic classification approaches hold the assumption that training and testing network environment are of the same. This assumption is invalid in most real cases due to the changes in traffic features and leads to the train-test gap issue: the model trained in the training environment performs poorly in the testing environment. In this paper, to address the gap, we propose CSA: a traffic classification approach based on packet-wise segmentation and aggregation. Firstly, we observe that some specific fragments of network flows - subflows - are robust against the gap. Therefore, we are motivated to segment the traffic flows into different subflows. Afterward, with the justification of our feature selection, 26 statistical features are extracted from each subflow and input into its corresponding sub-classifier. Secondly, with the results from sub-classifiers, we develop an aggregation method based on their classification accuracy to increase the overall classification performance. We experiment on five real datasets, including three collected from the Northwest Center of CERNET (China Education and Research Network) and two from public traces. By comparing with state-of-the-art baselines, the experiment results demonstrate the effectiveness of our CSA against the gap. (C) 2020 Published by Elsevier B.V.
机译:以前的基于机器学习的网络流量分类方法认为训练和测试网络环境是相同的假设。由于流量特征的变化并导致火车测试差距问题,此假设在大多数实际情况下是无效的:在训练环境中培训的模型在测试环境中表现不佳。在本文中,为了解决差距,我们提出了CSA:基于数据包 - 明智分割和聚合的流量分类方法。首先,我们观察到网络流动的一些特定碎片 - 子流 - 对间隙具有鲁棒性。因此,我们有动力将交通流分成不同的子流。之后,通过我们的特征选择的理由,从每个子流中提取26个统计特征并输入到其对应的子分类器中。其次,通过子分类器的结果,我们基于其分类准确性开发了一个聚合方法,以提高整体分类性能。我们在五个真实数据集上试验,包括从Cernet(中国教育和研究网络)的西北中心和来自公共踪影的三个。通过与最先进的基线进行比较,实验结果证明了CSA对差距的有效性。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第27期|106192.1-106192.15|共15页
  • 作者单位

    Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;

    Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China|Tsinghua Univ Ctr Intelligent & Networked Syst Beijing Peoples R China;

    Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;

    Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;

    Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China|Xi An Jiao Tong Univ Res Inst Hangzhou Zhejiang Peoples R China;

    Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;

    Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Network traffic classification; train-test gap; Subflow; Ensemble learning;

    机译:网络流量分类;火车 - 测试间隙;子流;集合学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号