首页> 外文期刊>Knowledge-Based Systems >A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization
【24h】

A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization

机译:具有二次编程的并行变量邻域搜索算法,用于基数规定的组合优化

获取原文
获取原文并翻译 | 示例

摘要

Over the years, portfolio optimization remains an important decision-making strategy for investment. The most familiar and widely used approach in the field of portfolio optimization is the meanvariance framework introduced by Markowitz. Following this pioneering work, many researchers have extended this model to make it more practical and adapt to real-life problems. In this study, one of these extensions, the cardinality constrained portfolio optimization problem, is considered. Cardinality constraints transform the quadratic optimization model into the mixed-integer quadratic programming problem, which is proved to be NP-Hard, making it harder to obtain an optimal solution within a reasonable time by using exact solution methodologies. Hence, the vast majority of the researchers have taken advantage of approximate algorithms to overcome arising computational difficulties. To develop an efficient solution approach for cardinality constrained portfolio optimization, in this study, a parallel variable neighborhood search algorithm combined with quadratic programming is proposed. While the variable neighborhood search algorithm decides the combination of assets to be held in the portfolio, quadratic programming quickly calculates the proportions of assets. The performance of the proposed algorithm is tested on five well-known datasets and compared with other solution approaches in the literature. Obtained results confirm that the proposed solution approach is very efficient especially on the portfolios with low risk and highly competitive with state-of-the-art algorithms. (C) 2020 Elsevier B.V. All rights reserved.
机译:多年来,投资组合优化仍然是投资的重要决策策略。投资组合优化领域最熟悉和广泛使用的方法是Markowitz引入的意大式框架。在这种开创性的工作之后,许多研究人员已经扩展了这种模式,使其更加实际和适应现实生活问题。在本研究中,考虑了其中一种扩展,基数受限的组合优化问题。基数约束将二次优化模型转换为混合整数二次编程问题,这被证明是NP - 硬,使得通过使用精确的解决方法可以在合理的时间内获得最佳解决方案。因此,绝大多数研究人员利用了近似算法来克服计算困难。为了开发有效的基数的解决方案方法,在本研究中,提出了一种并行变量邻域搜索算法与二次编程相结合。虽然可变邻域搜索算法决定在投资组合中保存的资产组合,但二次编程快速计算了资产的比例。所提出的算法的性能在五个众所周知的数据集上进行测试,并与文献中的其他解决方案方法进行比较。获得的结果证实,建议的解决方案方法特别有效,特别是在具有低风险和高竞争性算法的投资组合上。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号