首页> 外文期刊>Knowledge-Based Systems >Identifying critical nodes in complex networks via graph convolutional networks
【24h】

Identifying critical nodes in complex networks via graph convolutional networks

机译:通过图表卷积网络识别复杂网络中的关键节点

获取原文
获取原文并翻译 | 示例

摘要

Critical nodes of complex networks play a crucial role in effective information spreading. There are many methods have been proposed to identify critical nodes in complex networks, ranging from centralities of nodes to diffusion-based processes. Most of them try to find what kind of structure will make the node more influential. In this paper, inspired by the concept of graph convolutional networks(GCNs), we convert the critical node identification problem in complex networks into a regression problem. Considering adjacency matrices of networks and convolutional neural networks(CNNs), a simply yet effectively method named RCNN is presented to identify critical nodes with the best spreading ability. In this approach, we can generate feature matrix for each node and use a convolutional neural network to train and predict the influence of nodes. Experimental results on nine synthetic and fifteen real networks show that under Susceptible-Infected-Recovered (SIR) model, RCNN outperforms the traditional benchmark methods on identifying critical nodes under spreading dynamic. (C) 2020 Elsevier B.V. All rights reserved.
机译:复杂网络的关键节点在有效的信息传播中起着至关重要的作用。已经提出了许多方法来识别复杂网络中的关键节点,范围从节点的集电区到基于扩散的过程。其中大多数都试图找到什么样的结构将使节点更具影响力。在本文中,灵感来自图表卷积网络(GCNS)的概念,我们将复杂网络中的关键节点识别问题转换为回归问题。考虑到网络和卷积神经网络(CNNS)的邻接矩阵,提出了一种名为RCNN的简单有效的方法以识别具有最佳扩散能力的关键节点。在这种方法中,我们可以为每个节点生成特征矩阵,并使用卷积神经网络来训练和预测节点的影响。九个合成和十五个真实网络的实验结果表明,在敏感感染恢复(SIR)模型下,RCNN优于传统的基准方法来识别传播动态下的关键节点。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第21期|105893.1-105893.8|共8页
  • 作者单位

    Univ Elect Sci & Technol China Big Data Res Ctr Chengdu 611731 Peoples R China;

    Sci & Technol Complex Land Syst Simulat Lab Beijing 100012 Peoples R China;

    Univ Elect Sci & Technol China Big Data Res Ctr Chengdu 611731 Peoples R China;

    Univ Elect Sci & Technol China Big Data Res Ctr Chengdu 611731 Peoples R China|Univ Elect Sci & Technol China Ctr Digitized Culture & Media Chengdu 611731 Peoples R China|Union Big Data Tech Inc Chengdu 610041 Peoples R China;

    Univ Elect Sci & Technol China Ctr Digitized Culture & Media Chengdu 611731 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Complex networks; Adjacency matrices; Critical nodes; Graph convolutional networks;

    机译:复杂网络;邻接矩阵;关键节点;图卷积网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号