首页> 外文期刊>Knowledge-Based Systems >A filter-based feature construction and feature selection approach for classification using Genetic Programming
【24h】

A filter-based feature construction and feature selection approach for classification using Genetic Programming

机译:基于滤波器的特征构造和遗传编程分类的特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Feature construction and feature selection are two common pre-processing methods for classification. Genetic Programming (GP) can be used to solve feature construction and feature selection tasks due to its flexible representation. In this paper, a filter-based multiple feature construction approach using GP named FCM that stores top individuals is proposed, and a filter-based feature selection approach using GP named FS that uses correlation-based evaluation method is employed. A hybrid feature construction and feature selection approach named FCMFS that first constructs multiple features using FCM then selects effective features using FS is proposed. Experiments on nine datasets show that features selected by FS or constructed by FCM are all effective to improve the classification performance comparing with original features, and our proposed FCMFS can maintain the classification performance with smaller number of features comparing with FCM, and can obtain better classification performance with smaller number of features than FS on the majority of the nine datasets. Compared with another feature construction and feature selection approach named FSFCM that first selects features using FS then constructs features using FCM, FCMFS achieves better performance in terms of classification and the smaller number of features. The comparisons with three state-of-art techniques show that our proposed FCMFS approach can achieve better experimental results in most cases. (C) 2020 Elsevier B.V. All rights reserved.
机译:功能结构和特征选择是分类的两个常见预处理方法。遗传编程(GP)可用于解决由于其灵活的表示而求解特征结构和特征选择任务。在本文中,提出了一种基于滤波器的多个特征施工方法,该滤波器的命名为FCM存储顶部个体,并且使用使用使用基于相关的评估方法的GP命名FS的基于滤波器的特征选择方法。混合特征构造和特征选择方法名为FCMFS,首先使用FCM构造多个功能,然后提出使用FS选择有效的功能。九个数据集的实验表明,由FS或FCM构建的特征都是有效改善与原始功能相比的分类性能,我们提出的FCMFS可以通过与FCM相比的较少数量的功能来维持分类性能,并可以获得更好的分类特征数量较少的性能比九个数据集的大部分的FS。与另一个特征结构和特征选择方法相比,命名FSFCM首先使用FS选择功能,然后使用FCM构建功能,FCMFS在分类和较少的功能方面实现了更好的性能。具有三种最先进的技术的比较表明,我们提出的FCMFS方法可以在大多数情况下实现更好的实验结果。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号