首页> 外文期刊>Knowledge-Based Systems >Feature selection for hierarchical classification via joint semantic and structural information of labels
【24h】

Feature selection for hierarchical classification via joint semantic and structural information of labels

机译:通过标签的联合语义和结构信息的分层分类功能选择

获取原文
获取原文并翻译 | 示例

摘要

Hierarchical Classification is widely used in many real-world applications, where the label space is exhibited as a tree or a Directed Acyclic Graph (DAG) and each label has rich semantic descriptions. Feature selection, as a type of dimension reduction technique, has proven to be effective in improving the performance of machine learning algorithms. However, many existing feature selection methods cannot be directly applied to hierarchical classification problems since they ignore the hierarchical relations and take no advantage of the semantic information in the label space. In this paper, we propose a novel feature selection framework based on semantic and structural information of labels. First, we transform the label description into a mathematical representation and calculate the similarity score between labels as the semantic regularization. Second, we investigate the hierarchical relations in a tree structure of the label space as the structural regularization. Finally, we impose two regularization terms on a sparse learning based model for feature selection. Additionally, we adapt the proposed model to a DAG case, which makes our method more general and robust in many real-world tasks. Experimental results on real-world datasets demonstrate the effectiveness of the proposed framework for hierarchical classification domains. (C) 2020 Elsevier B.V. All rights reserved.
机译:分层分类广泛用于许多真实应用程序,其中标签空间作为树或定向的非循环图(DAG),并且每个标签具有丰富的语义描述。特征选择作为一种尺寸减少技术,已被证明有效地提高机器学习算法的性能。然而,许多现有的特征选择方法不能直接应用于分层分类问题,因为它们忽略了分层关系,并且不利用标签空间中的语义信息。在本文中,我们提出了一种基于标签的语义和结构信息的新颖特征选择框架。首先,我们将标签描述转换为数学表示,并计算标签之间的相似度得分作为语义正则化。其次,我们调查标签空间的树结构中的分层关系作为结构正规化。最后,我们对特征选择的基于稀疏学习模型进行了两个正则化术语。此外,我们将所提出的模型调整为DAG案例,这使我们的方法在许多真实的任务中更加一般和强大。实验结果对现实世界数据集展示了所提出的分层分类域框架的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号