首页> 外文期刊>Knowledge-Based Systems >Hierarchical multi-task learning with CRF for implicit discourse relation recognition
【24h】

Hierarchical multi-task learning with CRF for implicit discourse relation recognition

机译:具有CRF的分层多任务学习,用于隐式话语关系识别

获取原文
获取原文并翻译 | 示例

摘要

Implicit discourse relation recognition (IDRR) remains an ongoing challenge. Recently, various neural network models have been proposed for this task, and have achieved promising results. However, almost all of them predict multi-level discourse senses separately, which not only ignores the semantic hierarchy of and mapping relationships between senses, but also may result in inconsistent predictions at different levels. In this paper, we propose a hierarchical multi-task neural network with a conditional random field layer (HierMTN-CRF) for multi-level IDRR. Specifically, a HierMTN component is designed to jointly model multi-level sense classifications, with these senses as supervision signals at different feature layers. Consequently, the hierarchical semantics of senses are explicitly encoded into features at different layers. To further exploit the mapping relationships between adjacent-level senses, a CRF layer is introduced to perform collective sense predictions. In this way, our model infers a sequence of multi-level senses rather than separate sense predictions in previous models. In addition, our model can be easily constructed based on existing IDRR models. Experimental results and in-depth analyses on the benchmark PDTB data set show that our model achieves significantly better and more consistent results over several competitive baselines on multi-level IDRR, without additional time overhead. (C) 2020 Elsevier B.V. All rights reserved.
机译:隐含的话语关系识别(IDRR)仍然是一个持续的挑战。最近,已经提出了针对这项任务的各种神经网络模型,并取得了有希望的结果。然而,几乎所有这些都预测了多级话语意义,它们不仅忽略了感官之间的语义层次结构和映射关系,而且也可能导致不同级别的不一致预测。在本文中,我们提出了一种具有用于多级IDRR的条件随机场层(HIERMTN-CRF)的分层多任务神经网络。具体地,HiERMTN组件设计成共同模拟多级别读分类,这些感官作为不同特征层的监控信号。因此,感官的分层语义被明确地编码到不同层的特征中。为了进一步利用相邻级感测之间的映射关系,引入CRF层以执行集体感测预测。通过这种方式,我们的模型揭示了一系列多级感官,而不是先前模型中的单独感知预测。此外,我们的模型可以根据现有的IDRR模型轻松构建。基准PDTB数据集上的实验结果和深入分析表明,我们的模型在多级IDRR上的几个竞争基础上实现了更好的效果更好,更一致,而无需额外的时间开销。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号