首页> 外文期刊>Knowledge-Based Systems >LDA-based data augmentation algorithm for acoustic scene classification
【24h】

LDA-based data augmentation algorithm for acoustic scene classification

机译:基于LDA的声学场景分类数据增强算法

获取原文
获取原文并翻译 | 示例

摘要

Deep neural network needs large amount of data for training, to obtain more data, many simple data augmentation algorithms have been proposed. In this paper, we propose a LDA-based data augmentation algorithm to extend the training set. The proposed LDA-based data augmentation algorithm uses the topic model LDA to detect the key audio words in the recordings, and further to detect the key audio events and non-key audio events for each recording; with the detected keyaudio-event segments, for each acoustic scene class, the probability distribution of key-audio-event's occurrence numbers, the probability distribution of key-audio-event's locations under each occurrence number and the probability distribution of key-audio-event's durations under each occurrence number is counted, and then the new recordings are generated according to these probability distributions. Experiments are done on the public TUT acoustic scenes 2016 dataset, and the experimental results show that compared with the other simple data augmentation algorithms, the proposed LDA-based data augmentation algorithm is more stable and effective, it can get better generalization ability for different kinds of neural network on different datasets. (C) 2020 Elsevier B.V. All rights reserved.
机译:深度神经网络需要大量的训练数据,以获得更多数据,已经提出了许多简单的数据增强算法。在本文中,我们提出了一种基于LDA的数据增强算法来扩展训练集。所提出的基于LDA的数据增强算法使用主题模型LDA来检测录制中的密钥音频单词,并进一步检测每个录音的密钥音频事件和非关键音频事件;通过检测到的密钥事件段,对于每个声学场景类,密钥 - 音频事件发生号码的概率分布,每个出现数下的密钥 - 音频事件的位置的概率分布以及密钥音频事件的概率分布计算每个发生编号的持续时间,然后根据这些概率分布生成新录制。实验在公共TUT声学场景2016年数据集完成,实验结果表明,与其他简单的数据增强算法相比,所提出的基于LDA的数据增强算法更稳定且有效,可以获得不同种类的更好的泛化能力不同数据集的神经网络。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第may11期|105600.1-105600.9|共9页
  • 作者单位

    Shandong Normal Univ Shandong Key Lab Med Phys & Image Proc Sch Phys & Elect Jinan 250358 Shandong Peoples R China|Shandong Normal Univ Shandong Prov Engn & Tech Ctr Light Manipulat Sch Phys & Elect Jinan 250358 Shandong Peoples R China;

    Shandong Normal Univ Shandong Key Lab Med Phys & Image Proc Sch Phys & Elect Jinan 250358 Shandong Peoples R China|Shandong Normal Univ Shandong Prov Engn & Tech Ctr Light Manipulat Sch Phys & Elect Jinan 250358 Shandong Peoples R China;

    Shandong Normal Univ Shandong Key Lab Med Phys & Image Proc Sch Phys & Elect Jinan 250358 Shandong Peoples R China|Shandong Normal Univ Shandong Prov Engn & Tech Ctr Light Manipulat Sch Phys & Elect Jinan 250358 Shandong Peoples R China;

    Nanchang Hangkong Univ Sch Informat Nanchang 330063 Jiangxi Peoples R China;

    Dezhou Univ Sch Informat Management Dezhou 253023 Peoples R China;

    Shandong Normal Univ Shandong Key Lab Med Phys & Image Proc Sch Phys & Elect Jinan 250358 Shandong Peoples R China|Shandong Normal Univ Shandong Prov Engn & Tech Ctr Light Manipulat Sch Phys & Elect Jinan 250358 Shandong Peoples R China;

    Shandong Normal Univ Shandong Key Lab Med Phys & Image Proc Sch Phys & Elect Jinan 250358 Shandong Peoples R China|Shandong Normal Univ Shandong Prov Engn & Tech Ctr Light Manipulat Sch Phys & Elect Jinan 250358 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Acoustic scene classification; Topic model; LDA; Key audio event; Non-key audio event;

    机译:声学场景分类;主题模型;LDA;密钥音频事件;非关键音频事件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号