首页> 外文期刊>Knowledge-Based Systems >Online transfer learning with multiple source domains for multi-class classification
【24h】

Online transfer learning with multiple source domains for multi-class classification

机译:在线传输学习,具有多级分类的多源域

获取原文
获取原文并翻译 | 示例

摘要

The major objective of transfer learning is to handle the learning tasks on a target domain by utilizing the knowledge extracted from the source domain(s), when the labeled data in the target domain are not sufficient. Transfer learning can be classified into offline transfer learning (OffTL) and online transfer learning (OnTL), and OnTL has attracted much attention and research due to its more realistic scenario assumed in practice. There can be multiple source domains, therefore, OnTL with Multiple Source Domains has been studied in recent years and algorithms have been proposed. Nevertheless, it can be noted that existing research on OnTL with Multiple Source Domains only deals with binary classification tasks. In this paper, we make the first attempt to study OnTL with Multiple Source Domains for multi-class classification (MC), and propose an algorithm, referred to as Online Multi-source Transfer Learning for Multi-class classification (OMTL-MC) algorithm. OMTL-MC algorithm is built on two-stage ensemble strategy, in this way, the knowledge extracted from different source domains can be simultaneously online transferred to improve the performance of the classifier in the target domain. In order to deeper explore the underlying structure among multiple classes, an Extended Hinge Loss (EHL) function is adopted in OMTL-MC. We theoretically analyze the mistake bound of OMTL-MC algorithm. In addition, experiments on several popular datasets expound that the proposed OMTL-MC algorithm outperforms the other compared algorithms. (C) 2019 Elsevier B.V. All rights reserved.
机译:转移学习的主要目标是通过利用源域中提取的知识,当目标域中的标记数据不充分时,通过利用源域中提取的知识来处理目标域上的学习任务。转移学习可以分为离线转移学习(offtl)和在线转移学习(ONTL),并且由于其在实践中假设的更现实的情景,ONTL引起了很多关注和研究。因此,可以有多个源极域,近年来已经研究了具有多个源域的ONTL,并提出了算法。尽管如此,可以注意到,对于具有多个源域的ONTL现有研究仅处理二进制分类任务。在本文中,我们首次尝试使用多级分类(MC)的多源域学习ONTL,并提出一种算法,称为多级分类(OMTL-MC)算法的在线多源传输学习。 OMTL-MC算法基于两阶段集合策略构建,以这种方式,从不同源域中提取的知识可以同时在线传输,以提高目标域中的分类器的性能。为了更深地探索多个类之间的底层结构,OMTL-MC中采用了扩展铰链损耗(EHL)函数。理论上,我们分析了OMTL-MC算法的错误。此外,对几个流行的数据集的实验阐述了所提出的OMTL-MC算法优于其他比较算法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号