首页> 外文期刊>Knowledge-Based Systems >Gaussian prior based adaptive synthetic sampling with non-linear sample space for imbalanced learning
【24h】

Gaussian prior based adaptive synthetic sampling with non-linear sample space for imbalanced learning

机译:基于高斯先验的具有非线性样本空间的自适应合成样本,用于不平衡学习

获取原文
获取原文并翻译 | 示例

摘要

In the presence of skewed category distribution, most learning algorithms fail to provide favorable performance on the representation about data characteristics. Thus learning from imbalanced data is a crucial challenge in the field of data engineering and knowledge discovery. In this work, we proposed an imbalanced learning method to generate minority samples for the compensation of class distribution skews. Different from existing synthetic over-sampling techniques, the data generation is conducted within the hyperplane rather than on the hyperline, thus the proposed method breaks down the ties imposed by the linear interpolation. In addition, this proposed method minimizes the sampling uncertain and risk by integrating a prior knowledge about the minority class instances. Moreover, a multi-objective optimization combined with error bound model develops this proposed method into an adaptive imbalanced learning. Extensive experiments have been performed on imbalanced issues, and the experimental results demonstrate that this method can improve the performance of different classification algorithms. (C) 2019 Elsevier B.V. All rights reserved.
机译:在存在倾斜的类别分布的情况下,大多数学习算法无法在有关数据特征的表示上提供良好的性能。因此,从不平衡数据中学习是数据工程和知识发现领域中的关键挑战。在这项工作中,我们提出了一种不平衡的学习方法来生成少数样本以补偿类分布偏斜。与现有的合成过采样技术不同,数据生成是在超平面内而不是在超线上进行的,因此,所提出的方法打破了线性插值的约束。此外,该方法通过整合有关少数群体实例的先验知识,将抽样不确定性和风险降至最低。此外,结合误差边界模型的多目标优化将该方法发展为一种自适应不平衡学习方法。针对不平衡问题进行了广泛的实验,实验结果表明该方法可以提高不同分类算法的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号