首页> 外文期刊>Knowledge-Based Systems >Machine learning based decision making for time varying systems: Parameter estimation and performance optimization
【24h】

Machine learning based decision making for time varying systems: Parameter estimation and performance optimization

机译:基于机器学习的时变系统决策:参数估计和性能优化

获取原文
获取原文并翻译 | 示例

摘要

The class of decision making problems focuses on the optimization of single or multiple design objectives, and the classical decision making procedures require the full scope of the system information. However, the system dynamics consist of unknown time varying parameters within a specific range of dynamic decision making problems, which cannot be handled by the classical procedures. To solve these problems, this paper proposes a machine learning based decision making algorithm. It uses the technique of machine learning to estimate the real-time unknown parameters using the recorded system data, and makes appropriate decisions using model predictive control (MPC) method to optimize some desired key performance indicators (KPIs). The effective performance of the proposed algorithm is further evaluated using a simulation based case study. (C) 2020 Elsevier B.V. All rights reserved.
机译:决策问题的类别侧重于单个或多个设计目标的优化,而经典决策过程需要系统信息的全部范围。但是,系统动力学由动态决策问题的特定范围内的未知时变参数组成,这是经典过程无法处理的。为了解决这些问题,本文提出了一种基于机器学习的决策算法。它使用机器学习技术,使用记录的系统数据来估计实时未知参数,并使用模型预测控制(MPC)方法做出适当的决策,以优化某些所需的关键性能指标(KPI)。使用基于仿真的案例研究进一步评估了所提出算法的有效性能。 (C)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第29期|105479.1-105479.9|共9页
  • 作者

  • 作者单位

    Univ Southampton Dept Civil Maritime & Environm Engn Southampton SO16 7QF Hants England;

    Univ Southampton Sch Elect & Comp Sci Southampton SO17 1BJ Hants England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine learning; Model predictive control; Time varying system;

    机译:机器学习;模型预测控制;时变系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号