首页> 外文期刊>Knowledge-Based Systems >A dynamic financial distress forecast model with multiple forecast results under unbalanced data environment
【24h】

A dynamic financial distress forecast model with multiple forecast results under unbalanced data environment

机译:非平衡数据环境下具有多个预测结果的动态财务困境预测模型

获取原文
获取原文并翻译 | 示例

摘要

Corporate financial distress forecasts are important for companies, investors and regulatory authorities. However, as most financial distress forecast (FDF) models in previous studies were based on a single time dimension, they have tended to ignore the two key financial distress data characteristics, imbalanced data sets and concept drift of data stream. To overcome these problems, this study proposes a new dynamic financial distress forecasting (DFDF) approach, the Adaptive Neighbor SMOTE-Recursive Ensemble Approach (ANS-REA), that allows for multiple forecast results from unbalanced data streams. An empirical experiment was conducted on 373 financially distressed samples and 1119 matching normal Chinese listed companies from 2007 to 2017. With an overall average AUC, it was found that the Random Forest (RF) classifier outperformed other commonly used classifiers such as Support Vector Machine (SVM), Decision Tree (DT), baggingDT, oblique random forests (obRF), Kernel ridge regression (KRR) and Bayes in the classification of DFDF data. In addition, the proposed ANS-REA algorithm had better performance than SMOTE, ANS, Random Walk Over-Sampling Approach (RWO), Rapidly Converging Gibbs sampling Technique (racog), SMOTEboost, RUSboost, SMOTEbagging, wRACOG and Majority Weighted Minority Oversampling Technique (MWMOTE) methods in dealing with imbalanced data sets classification. Further, we found that the proposed model that combined the multiple forecast results is the effective way to solve the financial distress forecast problem. (C) 2019 Elsevier B.V. All rights reserved.
机译:公司财务困境的预测对于公司,投资者和监管机构而言非常重要。但是,由于先前研究中大多数财务困境预测(FDF)模型都是基于单个时间维度的,因此它们倾向于忽略两个关键财务困境数据特征,不平衡数据集和数据流的概念漂移。为了克服这些问题,本研究提出了一种新的动态财务困境预测(DFDF)方法,即自适应邻居SMOTE-递归集合方法(ANS-REA),该方法可以从不平衡数据流中获得多个预测结果。从2007年到2017年,对373个财务困境样本和1119个与中国正规上市公司相匹配的公司进行了实证实验。在总体平均AUC方面,发现随机森林(RF)分类器优于其他常用分类器,例如支持向量机( SVM),决策树(DT),baggingDT,倾斜随机森林(obRF),内核岭回归(KRR)和贝叶斯对DFDF数据进行分类。此外,所提出的ANS-REA算法的性能优于SMOTE,ANS,随机步行超采样方法(RWO),快速收敛吉布斯采样技术(racog),SMOTEboost,RUSboost,SMOTEbagging,wRACOG和多数加权少数过采样技术( MWMOTE)方法来处理不平衡的数据集分类。此外,我们发现结合多个预测结果的建议模型是解决财务困境预测问题的有效方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号