首页> 外文期刊>Knowledge-Based Systems >A novel test-cost-sensitive attribute reduction approach using the binary bat algorithm
【24h】

A novel test-cost-sensitive attribute reduction approach using the binary bat algorithm

机译:一种使用二进制蝙蝠算法的新型测试成本敏感属性约简方法

获取原文
获取原文并翻译 | 示例

摘要

Attribute reductions are essential pre-processing steps in such as data mining, machine learning, pattern recognition and many other fields. Moreover, test-cost-sensitive attribute reductions are often used when we have to deal with cost-sensitive data. The main result of this paper is a new meta-heuristic optimization method for finding optimal test-cost-sensitive attribute reduction that is based on binary bat algorithm that originally was designed to model the echolocation behavior of bats when they search their prey. First we provide a 0-1 integer programming algorithm that can calculate optimal reduct but is inefficient for large data sets. We will use it to evaluate other algorithms. Next, a new fitness function that utilizes the pairs of inconsistent objects and does not have any uncertain parameter is design and an efficient algorithm for counting inconsistent pairs is provided. Then, an efficient test-cost-sensitive attribute reduction technique that uses binary bat algorithm is provided. Finally, a new evaluation model with four different evaluation metrics has been proposed and used to evaluate algorithms that only provide sub-optimal solutions. Several experiments were carried out on broadly used benchmark data sets and the results have shown the superiority of our new algorithm, in terms of various metrics, computational time, and classification accuracy, especially for high-dimensional data sets. (C) 2019 Elsevier B.V. All rights reserved.
机译:属性减少是数据挖掘,机器学习,模式识别和许多其他领域中必不可少的预处理步骤。此外,当我们必须处理成本敏感数据时,通常会使用测试成本敏感属性减少。本文的主要结果是基于二进制蝙蝠算法的一种新的启发式优化方法,用于寻找最佳的测试成本敏感属性归约,该算法最初旨在模拟蝙蝠在搜寻猎物时的回声定位行为。首先,我们提供了0-1整数编程算法,该算法可以计算最佳归约率,但对于大型数据集而言效率不高。我们将使用它来评估其他算法。接下来,设计了一种新的适应性函数,该函数利用一对不一致的对象并且没有任何不确定的参数,并提供了一种用于计算不一致对的有效算法。然后,提供了一种使用二进制蝙蝠算法的有效的测试成本敏感属性减少技术。最后,提出了一种具有四个不同评估指标的新评估模型,并将其用于评估仅提供次优解决方案的算法。在广泛使用的基准数据集上进行了几次实验,结果表明了我们的新算法在各种指标,计算时间和分类准确性方面的优越性,尤其是对于高维数据集。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|104938.1-104938.24|共24页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 211106 Jiangsu Peoples R China|McMaster Univ Dept Comp & Software Hamilton ON L8S 4K1 Canada;

    Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Sch Modern Posts Nanjing 210003 Jiangsu Peoples R China|Nanjing Univ State Key Lab Novel Software Technol Nanjing 210093 Jiangsu Peoples R China;

    McMaster Univ Dept Comp & Software Hamilton ON L8S 4K1 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rough set; Attribute reduction; Test-cost-sensitive; Binary bat algorithm;

    机译:粗糙集;属性约简;测试成本敏感;二进制蝙蝠算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号