首页> 外文期刊>Knowledge-Based Systems >Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system
【24h】

Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system

机译:基于两级高斯混合模型聚类的自行车共享系统分层预测

获取原文
获取原文并翻译 | 示例

摘要

Recently, there is a new approach for bike usage that has emerged by bike-sharing system. While traveling on the road, more and more people will choose to ride shared bicycle at home and abroad. When using shared bikes, we also face to problems and challenges. As a result of the shared-bikes renting/returning at different stations in different periods are imbalanced, the bike-sharing system needs to be updated frequently. This is the motivation for our study of bike-sharing traffic prediction. In this paper, we propose a hierarchical prediction model that predicts the number of rents/returns to each cluster in a future period to achieve redistribution. Firstly, we propose a two-level Gaussian Mixture Model clustering algorithm to divide bike stations into groups where migration trends of bikes among stations as well as geographical locations information are considered. Secondly, we employ a gradient boosting regression tree to predict the entire traffic rents. Thirdly, we use a multi-similarity based inference model to forecast the check-out proportion and inter-cluster transition. Based on the above, finally the rents/returns of bikes to each cluster are deduced. In order to verify the effectiveness of our hierarchical prediction model, we validate it on the bike-sharing system of New York City (NYC) and Washington D.C. (D.C.) respectively, and compare the results with those of other popular methods obtained. We prove that our method is robust. Experimental results demonstrate the superiority over other methods. Compared with the state-of-the-art model, our model reduces the error rate roughly by 8% and 22% respectively in the check-out and check-in prediction for NYC, and reduces roughly by 3% and 2% respectively in the check-out and check-in prediction for D.C. Compared with other baseline models, our model can reduce the error rate roughly by 20% and 30% respectively in the check-out and check-in prediction for the two cities. (C) 2019 Elsevier B.V. All rights reserved.
机译:最近,自行车共享系统出现了一种新的自行车使用方法。在旅途中旅行时,越来越多的人会选择在国内外骑共享自行车。在使用共享自行车时,我们也面临问题和挑战。由于不同时期不同站点的共享自行车租赁/回程不平衡,自行车共享系统需要经常更新。这是我们研究共享单车流量预测的动机。在本文中,我们提出了一种层次化的预测模型,该模型可以预测未来一段时间内每个集群的租金/收益数,以实现重新分配。首先,我们提出了一种两级高斯混合模型聚类算法,将自行车站点划分为组,其中考虑了站点之间的自行车迁移趋势以及地理位置信息。其次,我们使用梯度提升回归树来预测整个交通租金。第三,我们使用基于多相似性的推理模型来预测结帐比例和集群间过渡。基于以上所述,最终推论出自行车向每个集群的租金/回报。为了验证分层预测模型的有效性,我们分别在纽约市(New York City,NYC)和华盛顿特区(Washington D.C.,DC.C.)的自行车共享系统上对其进行了验证,并将结果与​​其他常用方法进行了比较。我们证明了我们的方法是可靠的。实验结果表明,该方法优于其他方法。与最新模型相比,我们的模型在纽约市的结帐和登机预测中分别将错误率分别降低了8%和22%,在纽约市的错误和预测中分别降低了3%和2%。 DC的签出和签到预测与其他基准模型相比,我们的模型可以将两个城市的签出和签到预测分别分别减少20%和30%的错误率。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|84-97|共14页
  • 作者单位

    Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R China;

    Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R China|Shandong Normal Univ, Inst Data Sci & Technol, Jinan 250014, Shandong, Peoples R China;

    Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R China;

    Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R China;

    Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R China|Shandong Normal Univ, Inst Data Sci & Technol, Jinan 250014, Shandong, Peoples R China;

    Georgia State Univ, Robinson Coll Business, 35 Broad St NW, Atlanta, GA 30309 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bike-sharing system; Traffic prediction; Gaussian mixture model clustering; Migration trend;

    机译:自行车共享系统;交通预测;高斯混合模型聚类;迁移趋势;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号