首页> 外文期刊>Knowledge-Based Systems >Multi-task and multi-view learning based on particle swarm optimization for short-term traffic forecasting
【24h】

Multi-task and multi-view learning based on particle swarm optimization for short-term traffic forecasting

机译:基于粒子群算法的多任务多视图短期交通预测

获取原文
获取原文并翻译 | 示例

摘要

Spatiotemporal prediction modeling of traffic is an important issue in the field of spatiotemporal data mining. However, it is encountering multiple challenges such as the global spatiotemporal correlation between predictive tasks, balanced between spatiotemporal heterogeneity and the global predictive power of the model, and parameter optimization of prediction models. Most existing short-term traffic prediction methods only emphasize spatiotemporal dependence and heterogeneity, so it is difficult to get satisfactory prediction accuracy. In this paper, spatiotemporal multi-task and multi view feature learning models based on particle swarm optimization are combined to concurrently address these challenges. First, cross-correlation is used to construct the spatiotemporal proximity view, periodic view and trend view of each road segment to characterize spatiotemporal dependence and heterogeneity. Second, the prediction results of three spatiotemporal views are obtained using a set of kernels, which is further regarded as a high-level heterogeneous semantic feature as the input of the multi-task multi-view feature learning model. Third, additional regularization terms (e.g., group Lasso penalty, graph Laplacian regularization) are utilized to constrain all tasks to select a set of shared features and ensure the relatedness between tasks and consistency between views, so that the predictive model has a good global predictive ability and can capture global spatiotemporal correlation in the road network. Finally, particle swarm optimization is introduced to obtain the optimal parameter set and enhance the training speed of the proposed model. Experimental studies on real vehicular speed datasets collected on city roads demonstrate that the proposed model significantly outperform the existing nine baseline methods in terms of prediction accuracy. The results suggest that the proposed model merits further attention for other spatiotemporal prediction tasks, such as water quality, crowd flow, owing to the versatility of the modeling process for spatiotemporal data. (C) 2019 Elsevier B.V. All rights reserved.
机译:业务量的时空预测建模是时空数据挖掘领域的重要课题。但是,它遇到了多个挑战,例如,预测任务之间的全局时空相关性,时空异质性与模型的全局预测能力之间的平衡以及预测模型的参数优化。现有的大多数短期交通量预测方法仅强调时空依赖性和异质性,因此难以获得令人满意的预测精度。本文结合基于粒子群优化的时空多任务和多视图特征学习模型来同时解决这些挑战。首先,使用互相关来构造每个路段的时空邻近视图,周期性视图和趋势视图,以表征时空依赖性和异质性。其次,使用一组内核获得三个时空视图的预测结果,该内核进一步被视为高级的异构语义特征,作为多任务多视图特征学习模型的输入。第三,利用附加的正则化项(例如组Lasso罚分,图Laplacian正则化)约束所有任务以选择一组共享特征,并确保任务之间的关联性和视图之间的一致性,从而使预测模型具有良好的全局预测性能力并可以捕获路网中的全局时空相关性。最后,引入粒子群优化算法以获得最优参数集并提高模型的训练速度。对在城市道路上收集的实际车速数据集进行的实验研究表明,在预测准确性方面,该模型明显优于现有的九种基线方法。结果表明,由于时空数据建模过程的多功能性,该模型值得进一步关注其他时空预测任务,例如水质,人群流量。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|116-132|共17页
  • 作者单位

    Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China|Fujian Collaborat Innovat Ctr Big Data Applicat G, Fuzhou 350003, Fujian, Peoples R China;

    Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China|Fujian Collaborat Innovat Ctr Big Data Applicat G, Fuzhou 350003, Fujian, Peoples R China|Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China;

    Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Fujian Collaborat Innovat Ctr Big Data Applicat G, Fuzhou 350003, Fujian, Peoples R China|Fuzhou Univ, Spatial Informat Res Ctr Fujian Prov, Fuzhou 350002, Fujian, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view learning; Multi-task learning; Particle swarm optimization; Spatiotemporal dependency; Spatiotemporal heterogeneity; Task relationship learning;

    机译:多视图学习;多任务学习;粒子群优化;时空依赖性;时空异质性;任务关系学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号