首页> 外文期刊>Knowledge-Based Systems >Feature assisted stacked attentive shortest dependency path based Bi-LSTM model for protein-protein interaction
【24h】

Feature assisted stacked attentive shortest dependency path based Bi-LSTM model for protein-protein interaction

机译:基于特征辅助堆叠细心最短依赖路径的Bi-LSTM模型用于蛋白质相互作用

获取原文
获取原文并翻译 | 示例

摘要

Knowledge about protein-protein interactions is essential for understanding the biological processes such as metabolic pathways, DNA replication, and transcription etc. However, a majority of the existing Protein-Protein Interaction (PPI) systems are dependent primarily on the scientific literature, which is not yet accessible as a structured database. Thus, efficient information extraction systems are required for identifying PPI information from the large collection of biomedical texts.In this paper, we present a novel method based on attentive deep recurrent neural network, which combines multiple levels of representations exploiting word sequences and dependency path related information to identify protein-protein interaction (PPI) information from the text. We use the stacked attentive bi-directional long short term memory (Bi-LSTM) as our recurrent neural network to solve the PPI identification problem. This model leverages joint modeling of proteins and relations in a single unified framework, which is named as the 'Attentive Shortest Dependency Path LSTM' (Att-sdpLSTM) model. Experimentation of the proposed technique was conducted on five popular benchmark PPI datasets, namely AiMed, Biolnfer, HPRD50, IEPA, and LLL The evaluation shows the F1-score values of 93.29%, 81.68%, 78.73%, 76.25%, & 83.92% on AiMed, Biolnfer, HPRD50, IEPA, and LLL dataset, respectively. Comparisons with the existing systems show that our proposed approach attains state-of-the-art performance. (C) 2018 Elsevier B.V. All rights reserved.
机译:有关蛋白质-蛋白质相互作用的知识对于理解生物学过程(例如代谢途径,DNA复制和转录等)至关重要。但是,大多数现有的蛋白质-蛋白质相互作用(PPI)系统主要依赖于科学文献,尚未作为结构化数据库进行访问。因此,需要有效的信息提取系统来从大量的生物医学文本中识别PPI信息。本文提出了一种基于细心深度递归神经网络的新方法,该方法结合了利用单词序列和依赖路径相关的多个表示形式从文本中识别蛋白质间相互作用(PPI)信息的信息。我们使用堆叠式注意力双向长期短期记忆(Bi-LSTM)作为递归神经网络来解决PPI识别问题。该模型在一个统一的框架中利用蛋白质和关系的联合建模,该框架被称为“注意力最短依赖路径LSTM”(Att-sdpLSTM)模型。在5个流行的基准PPI数据集(即AiMed,BioInfer,HPRD50,IEPA和LLL)上进行了所建议技术的实验。评估显示,F1得分分别为93.29%,81.68%,78.73%,76.25%和83.92% AiMed,BioInfer,HPRD50,IEPA和LLL数据集。与现有系统的比较表明,我们提出的方法达到了最先进的性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号