首页> 外文期刊>Knowledge-Based Systems >Random walk based method to identify essential proteins by integrating network topology and biological characteristics
【24h】

Random walk based method to identify essential proteins by integrating network topology and biological characteristics

机译:基于随机游动的方法通过整合网络拓扑和生物学特征来识别必需蛋白质

获取原文
获取原文并翻译 | 示例

摘要

Essential proteins are regarded as the fundamental components of living organisms. The identification of essential proteins greatly contributes to the understanding of cellular functions and biological mechanisms. There are a variety of experimental as well as computational methods which have been used for essential protein detection. However, it is still a big challenge to further improve the precision of essential proteins prediction. In this paper, we introduce a novel essential proteins exploration method named RWEP, which adopts random walk algorithm and integrates the topological and biological properties to determine protein essentiality in protein-protein interaction (PPI) networks. In this method, first, PPIs are weighted based on topology of networks, gene expression and GO annotation data. Then each protein in a PPI network is assigned an initial score by exploiting subcellular localization and protein complexes information. Finally, we apply a random walk with restart (RWR) algorithm on the weighted PPI networks to iteratively score proteins. To demonstrate the performance of RWEP, we have carried out a series of experiments on four different yeast datasets (DIP, MIPS, Krogan and Gavin). The computational experiments confirm the efficiency of RWEP in predicting essential proteins. Compared with other state-of-the-art essential proteins identification methods, RWEP achieves a superior performance in terms of various evaluation criteria. (C) 2019 Elsevier B.V. All rights reserved.
机译:必需蛋白质被认为是生物体的基本组成部分。必需蛋白质的鉴定大大有助于理解细胞功能和生物学机制。有许多用于必需蛋白质检测的实验方法和计算方法。然而,进一步提高必需蛋白预测的准确性仍然是一个巨大的挑战。在本文中,我们介绍了一种称为RWEP的新型必需蛋白质探索方法,该方法采用随机游走算法,并结合拓扑和生物学特性来确定蛋白质-蛋白质相互作用(PPI)网络中的蛋白质必需性。在这种方法中,首先,基于网络拓扑,基因表达和GO注释数据对PPI进行加权。然后,通过利用亚细胞定位和蛋白质复合物信息为PPI网络中的每种蛋白质分配初始分数。最后,我们在加权的PPI网络上应用带有重新启动的随机行走(RWR)算法来对蛋白质进行迭代评分。为了证明RWEP的性能,我们对四个不同的酵母数据集(DIP,MIPS,Krogan和Gavin)进行了一系列实验。计算实验证实了RWEP在预测必需蛋白质中的效率。与其他最新的必需蛋白质鉴定方法相比,RWEP在各种评估标准方面均具有出色的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号