首页> 外文期刊>Knowledge-Based Systems >An elitist nondominated sorting hybrid algorithm for multi-objective flexible job-shop scheduling problem with sequence-dependent setups
【24h】

An elitist nondominated sorting hybrid algorithm for multi-objective flexible job-shop scheduling problem with sequence-dependent setups

机译:具有序列相关设置的多目标柔性作业车间调度问题的精英非控制排序混合算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an elitist nondominated sorting hybrid algorithm, namely ENSHA, is proposed to solve the multi-objective flexible job-shop scheduling problem (MOFJSSP) with sequence-dependent setup times/costs (MOFJSSP_SDST/C). The objectives to be minimized are the maximal completion time (i.e., makespan) and the total setup costs (TSC). The makespan is an efficiency-focused objective whereas the TSC is an economic focused one. Existing works mainly consider the efficiency-focused multiple criteria. The main highlights of this paper are threefold, i.e., the operation-based sequence model, the problem-dependent job assignment rules and the novel evolutionary framework of ENSHA. For the operation-based sequence model, this is the first time that the sequence model of MOFJSSPs has been proposed and the TSC has been treated as an independent objective in MOFJSSPs. For the job assignment rules, the solution representation is first proposed, and then three job assignment rules are specifically designed to decode solutions or sequences into feasible scheduling schemes. For the novel evolutionary framework, it works with two populations, i.e., the main population (MP) and the auxiliary population (AP). First, ENSHA adopts the elitist nondominated sorting method for evolving MP to maintain high-quality solutions regarding both the convergence and diversity. Next, a machine learning strategy based on the estimation of distribution algorithm (EDA) is proposed to learn the valuable information from nondominated solutions in MP for building a probabilistic model. This model is then used to generate the offspring of AP. Furthermore, a simple yet effective cooperation-based refinement mechanism is raised to combine MP and AP, so as to generate MP of the next generation. Finally, experimental results on 39 benchmark instances and a real-life case study demonstrate the effectiveness and application values of the proposed ENSHA. (C) 2019 Elsevier B.V. All rights reserved.
机译:为了解决多目标柔性作业车间调度问题(MOFJSSP),提出了一种基于精英的非优势排序混合算法ENSHA,该问题具有与序列相关的建立时间/成本(MOFJSSP_SDST / C)。要最小化的目标是最大完成时间(即,制造期)和总安装成本(TSC)。制造期是一个以效率为中心的目标,而TSC是一个以经济为中心的目标。现有作品主要考虑以效率为中心的多个标准。本文的主要重点是三个方面,即基于操作的序列模型,与问题相关的工作分配规则以及ENSHA的新颖进化框架。对于基于操作的序列模型,这是首次提出MOFJSSP的序列模型,并且TSC被视为MOFJSSP中的独立目标。对于作业分配规则,首先提出解决方案表示,然后专门设计三个作业分配规则,以将解决方案或序列解码为可行的调度方案。对于新颖的进化框架,它适用于两个种群,即主要种群(MP)和辅助种群(AP)。首先,ENSHA采用精英非主导的排序方法来发展MP,以在融合和多样性方面保持高质量的解决方案。接下来,提出了一种基于分布算法估计(EDA)的机器学习策略,以从MP中非支配的解决方案中学习有价值的信息,以建立概率模型。然后使用该模型生成AP的后代。此外,提出了一种简单而有效的基于合作的细化机制,将MP和AP相结合,以生成下一代MP。最后,在39个基准实例和真实案例研究中的实验结果证明了所提出的ENSHA的有效性和应用价值。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号