首页> 外文期刊>Knowledge-Based Systems >Bayesian inference for the automated adjustment of an image segmentation pipeline - A modular approach applied to wound healing assays
【24h】

Bayesian inference for the automated adjustment of an image segmentation pipeline - A modular approach applied to wound healing assays

机译:贝叶斯推理用于自动调整图像分割管线-一种应用于伤口愈合分析的模块化方法

获取原文
获取原文并翻译 | 示例

摘要

Background: Dynamical biological and physiological processes as the migration of single cells, collective cell movement during tissue formation or the metastasis of tumors can nowadays be observed under in-vitro and in-vivo conditions. High temporal and spatial resolution require automated image segmentation and analysis. Although, open source and commercial software allow the segmentation of target regions, all parameters of an appropriate image processing algorithm have to be adapted manually by the user. Typically the experimenter knows details about the resulting images whereas he might not be trained to adapt parameters of segmentation algorithms.Methods: It is the aim of this study to provide an automated estimation of these parameters by applying Bayesian data analysis based on a single manually segmented image for calibration. We apply this technique to a temporal sequence of images showing the closing of a wound. The corresponding likelihood is given as difference between the manually segmented contour of the wound and the resulting model boundary of the segmentation process. We apply a typical segmentation pipeline consisting of an edge filter, a blurring filter and an area cut off process where six parameters control these operations. Bayesian multinested sampling algorithm is applied to estimate automatically these image pipeline parameters and their uncertainties.Results: The proposed algorithm is logically consistent and performs image segmentation with a high level of accuracy especially with regard to inter-observer variability in the input data. Further, Bayesian data analysis allows to estimate the uncertainty of the segmented wound area and of the velocity of the closing boundary.Conclusion: We were able to introduce a new approach for automated image segmentation, which produces excellent results in terms of ease of handling, preservation of expert knowledge, robustness and displaying its own uncertainties. Due to a broadly modular approach, the presented technique can also be applied to other processing pipelines offering a pragmatic and robust way to obtain an automated segmentation of biomedical data driven by the prior knowledge and information specified by the experimenter. (C) 2019 Elsevier B.V. All rights reserved.
机译:背景:如今,可以在体外和体内条件下观察到动态生物学和生理过程,如单细胞迁移,组织形成过程中集体细胞运动或肿瘤转移。高的时间和空间分辨率要求自动图像分割和分析。尽管开放源代码和商业软件允许目标区域的分割,但是适当的图像处理算法的所有参数都必须由用户手动调整。通常,实验者会了解所生成图像的详细信息,而他可能未受过训练以适应分割算法的参数。方法:本研究的目的是通过基于单个手动分割的贝叶斯数据分析来提供这些参数的自动估计用于校准的图像。我们将此技术应用于显示伤口闭合的图像的时间序列。相应的可能性作为手动分割的伤口轮廓与分割过程所得模型边界之间的差异给出。我们应用了一个典型的分割流水线,该流水线由一个边缘滤波器,一个模糊滤波器和一个区域截止过程组成,其中六个参数控制着这些操作。结果:所提出的算法在逻辑上是一致的,并且能够以较高的准确度执行图像分割,尤其是在输入数据的观察者间可变性方面。此外,贝叶斯数据分析还可以估计分割的伤口区域和闭合边界速度的不确定性。结论:我们能够引入一种自动图像分割的新方法,该方法在易于处理方面产生了出色的结果,保留专家知识,稳健性并显示其自身的不确定性。由于采用了广泛的模块化方法,因此所提出的技术也可以应用于其他处理流水线,从而提供一种实用且鲁棒的方法来获得由实验者指定的先验知识和信息驱动的生物医学数据的自动分段。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号