首页> 外文期刊>Knowledge-Based Systems >Unsupervised classification of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional Gaussian spectral clustering
【24h】

Unsupervised classification of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional Gaussian spectral clustering

机译:利用小波张量分解和二维高斯谱聚类对12导联心电信号进行无监督分类

获取原文
获取原文并翻译 | 示例

摘要

Due to high dimensionality and multiple variables, unsupervised classification of 12-lead ECG signals involves challenges and difficulties. In order to automatically discover unknown physiological features from raw multivariate signals and detect abnormal cardiac activities of a subject, we proposed an unsupervised classification scheme of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional Gaussian spectral clustering. After filtering and segmentation, each ECG sample is converted into a wavelet tensor by the Discrete Wavelet Packet Transform (DWPT). Main features of ECG samples can be clearly investigated in a multiple feature space constructed by the ECG lead, time and frequency sub-band. Then the Multilinear Principal Component Analysis (MPCA) is applied to reduce the dimensionality of ECG tensors as well as preserve the data interior structure. Taking account of both magnitude and orientation of feature vectors, a novel two-dimensional Gaussian spectral clustering (TGSC) is devised to cluster different 12-lead ECG samples. Furthermore, the dataset obtained from practical 12-lead ECG experiment and two datasets from PhysioBank are used to verify the efficiency of the proposed method. Clustering results show that more useful features of ECG signals can be extracted by the wavelet-tensor-based MPCA than by vector-based PCA. With the two-dimensional Gaussian proximity matrix, the clustering accuracy of TGSC is also higher than that of the traditional spectral clustering.
机译:由于高维和多变量,对12导联ECG信号进行无监督分类会带来挑战和困难。为了自动从原始多变量信号中发现未知的生理特征并检测对象的异常心脏活动,我们提出了一种使用小波张量分解和二维高斯谱聚类的12导联心电信号的无监督分类方案。经过滤波和分段后,每个ECG样本都通过离散小波包变换(DWPT)转换为小波张量。心电图样本的主要特征可以在由心电图导联,时间和频率子带构成的多特征空间中清楚地研究。然后应用多线性主成分分析(MPCA)来减少ECG张量的维数并保留数据内部结构。考虑到特征向量的大小和方向,设计了一种新颖的二维高斯谱聚类(TGSC)来聚类不同的12导联ECG样本。此外,从实际的12导联心电图实验获得的数据集和PhysioBank的两个数据集被用来验证该方法的有效性。聚类结果表明,与基于矢量的PCA相比,基于小波张量的MPCA可以提取更多有用的ECG信号特征。使用二维高斯邻近矩阵,TGSC的聚类精度也高于传统的光谱聚类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号