首页> 外文期刊>Knowledge-Based Systems >CNN and RNN based payload classification methods for attack detection
【24h】

CNN and RNN based payload classification methods for attack detection

机译:基于CNN和RNN的有效载荷分类方法以进行攻击检测

获取原文
获取原文并翻译 | 示例

摘要

In recent years, machine learning has been widely applied to problems in detecting network attacks, particularly novel attacks. However, traditional machine learning methods depend heavily on feature engineering, and extracting features is often time-consuming and complex. Thus, it is impractical to detect attacks with traditional machine learning methods in real-time applications. To discover network attacks efficiently, we propose an end-to-end detection approach. We implement deep learning models to analyze payloads and propose a convolutional neural network-based payload classification approach (PL-CNN) and a recurrent neural network-based payload classification approach (PL-RNN) for use in attack detection. Our two approaches learn feature representations from original payloads without feature engineering and support end-to-end detection. These approaches achieve accuracies of 99.36% and 99.98% when applied to the DARPA1998 dataset, respectively; these accuracies are comparable to or better than those of state-of-the-art methods. In addition, our methods are efficient and practical.
机译:近年来,机器学习已广泛应用于检测网络攻击(尤其是新型攻击)的问题。但是,传统的机器学习方法在很大程度上依赖于特征工程,并且提取特征通常是耗时且复杂的。因此,在实时应用程序中使用传统的机器学习方法检测攻击是不切实际的。为了有效地发现网络攻击,我们提出了一种端到端检测方法。我们实施深度学习模型来分析有效载荷,并提出了基于卷积神经网络的有效载荷分类方法(PL-CNN)和基于递归神经网络的有效载荷分类方法(PL-RNN)用于攻击检测。我们的两种方法可从原始有效载荷中学习特征表示,而无需进行特征工程设计并支持端到端检测。将这些方法应用于DARPA1998数据集时,其准确度分别为99.36%和99.98%;这些精确度与最新方法相当或更好。另外,我们的方法是有效和实用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号