首页> 外文期刊>Knowledge-Based Systems >SFAD: Toward effective anomaly detection based on session feature similarity
【24h】

SFAD: Toward effective anomaly detection based on session feature similarity

机译:SFAD:基于会话特征相似性进行有效的异常检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting anomalies in sequence data has become an important research topic with applications in the fields of network intrusion and cluster system reliability. Especially, detecting and locating unknown abnormal information are very important tasks. One of the challenges that is highly valued by both academia and industry is reducing the training time and the complexity of the model. Moreover, the model should not only improve the detection efficiency but should also quickly obtain accurate results. This paper proposes a novel anomaly detection algorithm with fuzzy clustering for the session feature similarity (SFAD). The proposed algorithm consists of three main steps. First, we establish sliding windows to collect the web access information of different users. Second, we use the PageRank algorithm to determine the webpage weight information and calculate the similarity information between users. Finally, using lambda Cut method of fuzzy clustering to identify suspect users, we can locate abnormal users based on the information returned from multiple windows. The experimental results show that our method is simple and practical; namely, through five groups of comparison experiments on the msnbc.com experimental dataset, the results show that the SFAD method can effectively achieve higher detection accuracy and a lower false alarm rate compared to other methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:序列数据异常的检测已成为网络入侵和集群系统可靠性领域的重要研究课题。特别地,检测和定位未知的异常信息是非常重要的任务。学术界和业界都高度重视的挑战之一是减少训练时间和模型的复杂性。此外,该模型不仅应提高检测效率,而且还应迅速获得准确的结果。针对会话特征相似度(SFAD),提出了一种基于模糊聚类的新颖异常检测算法。所提出的算法包括三个主要步骤。首先,我们建立滑动窗口以收集不同用户的Web访问信息。其次,我们使用PageRank算法确定网页权重信息并计算用户之间的相似度信息。最后,使用模糊聚类的lambda Cut方法识别可疑用户,我们可以根据从多个窗口返回的信息来定位异常用户。实验结果表明,该方法简单实用。也就是说,通过对msnbc.com实验数据集进行五组比较实验,结果表明,与其他方法相比,SFAD方法可以有效地实现更高的检测精度和更低的误报率。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第1期|149-156|共8页
  • 作者单位

    Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China|Fujian Prov Key Lab Network Secur & Cryptol, Fuzhou, Fujian, Peoples R China|Fujian Prov Digit Fujian Internet Of Things Lab E, Fuzhou, Fujian, Peoples R China;

    Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China;

    Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China;

    Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China;

    Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China;

    Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Session; Feature similarity; SimHash; Lambda cut; Anomaly detection;

    机译:会话;特征相似度;SimHash;Lambda剪切;异常检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号