首页> 外文期刊>Knowledge-Based Systems >Influence maximization in social networks under Deterministic Linear Threshold Model
【24h】

Influence maximization in social networks under Deterministic Linear Threshold Model

机译:确定性线性阈值模型下社交网络中的影响最大化

获取原文
获取原文并翻译 | 示例

摘要

We define the new Targeted and Budgeted Influence Maximization under Deterministic Linear Threshold Model problem and develop the novel and scalable TArgeted and BUdgeted Potential Greedy (TABU-PG) algorithm which allows for optional methods to solve this problem. It is an iterative and greedy algorithm that relies on investing in potential future gains when choosing seed nodes. We suggest new real-world mimicking techniques for generating influence weights, thresholds, profits, and costs. Extensive computational experiments on four real network (Epinions, Academia, Pokec and Inploid) show that our proposed heuristics perform significantly better than benchmarks. We equip TABU-PG with novel scalability methods which reduce runtime by limiting the seed node candidate pool, or by selecting more nodes at once, trading-off with spread performance.
机译:我们在确定性线性阈值模型问题下定义了新的目标和预算影响最大化,并开发了新颖且可扩展的TArgeted和BUdgeted潜在贪婪(TABU-PG)算法,该算法允许使用可选方法来解决此问题。这是一种迭代贪婪的算法,在选择种子节点时依赖于对潜在的未来收益进行投资。我们建议使用新的现实世界模拟技术来产生影响权重,阈值,利润和成本。在四个真实网络(Epinions,学术界,Pokec和Inploid)上进行的大量计算实验表明,我们提出的启发式算法的性能明显优于基准测试。我们为TABU-PG配备了新颖的可扩展性方法,该方法可通过限制种子节点候选池或通过一次选择更多节点,以扩展性能为代价来减少运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号